Skip to main content
Log in

Supramolecular Polymeric Chemosensor for Biomedical Applications: Design and Synthesis of a Luminescent Zinc Metallopolymer as a Chemosensor for Adenine Detection

Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Adenine is an important bio-molecule that plays many crucial roles in food safety and biomedical diagnostics. Differentiating adenine from a mixture of adenosine and other nucleic bases (guanine, thymine, cytosine, and uracil) is particularly important for both biological and clinical applications. A neutral ZnII metallosupramolecular polymer based on acyl hydrazone derived coordination centres (P1) were generated through self-assembly polymerization. It is a linear coordination polymer that behaves like self-standing film. The synthesis, 1H-NMR characterization, and spectroscopic properties of this supramolecular material are reported. P1 was found to be a chemosensor specific to adenine, with a luminescent enhancement. The binding properties of P1 with common nucleic bases and nucleosides reveal that this supramolecular polymer is very selective to adenine molecules (~20 to 420 times more selectivity than other nucleic bases). The formation constant (K) of P1 to adenine was found to be log K = 4.10 ± 0.02. This polymeric chemosensor produces a specific response to adenine down to 90 ppb. Spectrofluorimetric and 1H-NMR titration studies showed that the P1 polymer allows each ZnII coordination centre to bind to two adenine molecules through hydrogen bonding with their imine and hydrazone protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen X, Zhou Y, Peng X, Yoon J (2010) Chem Soc Rev 39:2120

    Article  PubMed  CAS  Google Scholar 

  2. Buryak A, Severin K (2005) J Am Chem Soc 127:3700

    Article  PubMed  CAS  Google Scholar 

  3. Edwards NY, Sager TW, McDevitt JT, Anslyn EV (2007) J Am Chem Soc 129:13575

    Article  PubMed  CAS  Google Scholar 

  4. Yoon J, Czarnik AW (1992) J Am Chem Soc 114:5874

    Article  CAS  Google Scholar 

  5. Jame TD, Sandanayake KRAS, Shinkai S (1995) Nature (London) 347:345

    Article  Google Scholar 

  6. Chen CT, Wagner H, Still WC (1998) Science 279:851

    Article  PubMed  CAS  Google Scholar 

  7. Shults MD, Pearce DA, Imperiali B (2003) J Am Chem Soc 125:10591

    Article  PubMed  CAS  Google Scholar 

  8. Chow CF, Chiu BKW, Lam MHW, Wong WY (2003) J Am Chem Soc 125:7802

    Article  PubMed  CAS  Google Scholar 

  9. Chow CF, Kong HK, Leung SW, Chiu BKW, Koo CK, Lei ENY, Lam MHW, Wong WT, Wong WY (2011) Anal Chem 83:289

    Article  PubMed  CAS  Google Scholar 

  10. Thomas SW III, Swager TM (2006) Adv Mater 18:1047

    Article  CAS  Google Scholar 

  11. Costero AM, Parra M, Gil S, Gotor R, Mancini PME, Martinez-Manez R, Sancenon F, Royo S (2010) Chem Asian J 5:1573

    Article  PubMed  CAS  Google Scholar 

  12. Mohr GJ (2004) Chem Eur J 10:1082

    Article  PubMed  CAS  Google Scholar 

  13. Zhang T, Anslyn EV (2007) Org Lett 9:1627

    Article  PubMed  CAS  Google Scholar 

  14. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  15. Shapiro R (1995) Origins Life Evol Biospheres 25:83

    Article  CAS  Google Scholar 

  16. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  17. Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2003) Molecular biology of the gene, 5th edn. Benjamin-Cummings, San Francisco

    Google Scholar 

  18. Li SP, Li P, Dong TTX, Tsim KWK (2001) Electrophoresis 22:144

    Article  PubMed  CAS  Google Scholar 

  19. Malathi R, Johnson IM (2001) J Biomol Struct Dyn 18:709

    Article  PubMed  CAS  Google Scholar 

  20. Oliveira-Brett AM, Diculescu V, Piedade JAP (2002) Bioelectrochem 55:61–62

    Article  CAS  Google Scholar 

  21. Cekan P, Sigurdsson ST (2009) J Am Chem Soc 131:18054

    Article  PubMed  CAS  Google Scholar 

  22. Koshida K, Harmenberg J, Stendahl U, Wahren B, Borgstrom E, Helstrom L (1985) Urol Res 13:213

    Article  PubMed  CAS  Google Scholar 

  23. Trewyn RW, Glaser R, Kelly DR, Jackson DG, Graham WP, Speicher CE (1982) Cancer 49:2513

    Article  PubMed  CAS  Google Scholar 

  24. Marvel CC, Del Rowe J, Bremer EG, Moskal JR (1994) Mol Chem Neuropathol 21:353

    Article  PubMed  CAS  Google Scholar 

  25. Yang FQ, Li GSP (2007) Talanta 73:269

    Article  PubMed  CAS  Google Scholar 

  26. Rasmuson T, Bjork GR (1995) Acta Oncol 34:61

    Article  PubMed  CAS  Google Scholar 

  27. Slominska EM, Szolkiewicz A, Smolenski RT, Rutkowski B, Swierczynski (2002) Nephron 91:286–291

    Article  PubMed  CAS  Google Scholar 

  28. Engle SJ, Stockelman MG, Chen J, Boivin G, Yum M-H, Davies PM, Ying MY, Sahota A, Simmonds HA, Stambrook PJ, Tischfield JA (1996) Proc Natl Acad Sci USA 93:5307

    Article  PubMed  CAS  Google Scholar 

  29. Stockelman MG, Lorenz JN, Smith FN, Boivin GP, Sahota A, Tischfield JA, Stambrook PJ (1998) Am J Physiol—Renal Physiol 275:F154

    CAS  Google Scholar 

  30. Edvardsson V, Palsson R, Olafsson I, Hjaltadottir G, Laxdal T (2001) Am J Kidney Dis 38:473

    Article  PubMed  CAS  Google Scholar 

  31. Silva M, Silva CHTD, Iulek J, Thiemann OH (2004) Biochem 43:7663

    Article  CAS  Google Scholar 

  32. Huang YF, Chang HT (2007) Anal Chem 79:4852

    Article  PubMed  CAS  Google Scholar 

  33. Gill BD, Indyk HE (2007) Int Dairy J 17:596

    Article  CAS  Google Scholar 

  34. Yan SK, Luo GA, Wang YM, Cheng YY (2006) J Pharm Biomed Anal 40:889

    Article  PubMed  CAS  Google Scholar 

  35. Li SP, Li P, Lai CM, Gong YX, Kan KKW, Dong TTX, Tsim KWK, Wang YT (2004) J Chromatogr A 1036:239

    Article  PubMed  CAS  Google Scholar 

  36. Li LS, Liu M, Da SL, Feng YQ (2004) Talanta 63:433

    Article  PubMed  CAS  Google Scholar 

  37. Ganzera M, Vrabl P, Worle E, Burgstaller W, Stuppner H (2006) Anal Biochem 359:132

    Article  PubMed  CAS  Google Scholar 

  38. Fürst W, Hallström S (1992) J Chromatogr 578:39

    Article  PubMed  Google Scholar 

  39. Childs KF, Ning XH, Bolling SF (1996) J Chromatogr B 678:181

    Article  CAS  Google Scholar 

  40. Cahours X, Dessans H, Morin P, Dreux M, Agrofoglio L (2000) J Chromatogr A 895:101

    Article  PubMed  CAS  Google Scholar 

  41. Xiao F, Zhao F, Li J, Liu L, Zheng B (2008) Electrochim Acta 53:7781

    Article  CAS  Google Scholar 

  42. Fadrna R, Yosypchuk B, Fojta M, Navratil T, Novotny L (2005) Anal Lett 37:399

    Article  Google Scholar 

  43. Itoh K, Aida S, Ishiwata S, Sasaki S, Ishida N, Mizugaki M (1993) Clin Chim Acta 217:221

    Article  PubMed  CAS  Google Scholar 

  44. Itoh K, Konno T, Sasaki T, Ishiwata S, Ishida N, Misugaki M (1992) Clin Chim Acta 206:181

    Article  PubMed  CAS  Google Scholar 

  45. Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H (2002) Anal Biochem 302:114

    Article  PubMed  CAS  Google Scholar 

  46. Pietrzyk A, Suriyanarayanan S, Kutner W, Chitta R, Zandler ME, D’Souza F (2010) Biosens Bioelectron 25:2522

    Article  PubMed  CAS  Google Scholar 

  47. Devi LM, Negi DPS (2011) Nanotech 22:245502

    Article  Google Scholar 

  48. Wang P, Wu H, Dai Z, Zou XY (2011) Biosens Bioelectron 26:3339

    Article  PubMed  CAS  Google Scholar 

  49. Whittell GR, Hager MD, Schubert US, Manners I (2011) Nat Mater 10:176

    Article  PubMed  CAS  Google Scholar 

  50. Wild A, Hornig S, Schlütter F, Vitz J, Friebe C, Hager MD, Winter A, Schubert US (2010) Macromol Rapid Comm 31:921

    Article  CAS  Google Scholar 

  51. Wang Z, McWilliams AR, Evans CEB, Lu X, Chung S, Winnik MA, Manner I (2002) Adv Mater 12:415

    Google Scholar 

  52. Payne SJ, Fiore GL, Fraser CL, Demas JN (2010) Anal Chem 82:917

    Article  PubMed  CAS  Google Scholar 

  53. Holliday BJ, Stanford TB, Swager TM (2006) Chem Mater 18:5649

    Article  CAS  Google Scholar 

  54. Smith RC, Tennyson AG, Won AC, Lippard SJ (2006) Inorg Chem 45:9367

    Article  PubMed  CAS  Google Scholar 

  55. Do L, Smith RC, Tennyson AG, Lippard SJ (2006) Inorg Chem 45:8998

    Article  PubMed  CAS  Google Scholar 

  56. Chow CF, Fujii S, Lehn J-M (2007) Angew Chem Int Ed 46:5007

    Article  CAS  Google Scholar 

  57. Chow CF, Fujii S, Lehn J-M (2008) Chem Asian J, 1324

  58. Hofmeier H, Schubert US (2005) Chem Commun 2423

  59. Beck JB, Ineman J, Rowan MSJ (2005) Macromolecules 38:5060

    Article  CAS  Google Scholar 

  60. Hofmeier H, El-ghayoury A, Schenning APHJ, Schubert US (2004) Chem Commun 318

  61. Andres PR, Schubert US (2004) Adv Mater 16:1043

    Article  CAS  Google Scholar 

  62. Gohy J-F, Lohmeijer BGG, Schubert US (2003) Chem Eur J 9:3472

    Article  PubMed  CAS  Google Scholar 

  63. Hofmeier H, Schmatloch S, Wouters D, Schubert US (2003) Macromol Chem Phys 204:2197

    Article  CAS  Google Scholar 

  64. Beck JB, Rowan SJ (2003) J Am Chem Soc 125:13922

    Article  PubMed  CAS  Google Scholar 

  65. Schubert US, Eschbaumer C (2002) Angew Chem Int Ed 41:2893

    Article  Google Scholar 

  66. Schmatloch S, Fernandez-GonzTlez M, Schubert US (2002) Macromol Rapid Commun 23:957

    Article  CAS  Google Scholar 

  67. Whittell GR, Manners I (2007) Adv Mater 19:3439

    Article  CAS  Google Scholar 

  68. Holliday BJ, Swager TM (2005) Chem Commun 23

  69. Eloi J-C, Chabanne L, Whittell GR, Manners I (2008) Mater Today 11:28

    Article  CAS  Google Scholar 

  70. Dobrawa R, Wurthner F (2005) J Polym Sci Part A 43:4981

    Article  CAS  Google Scholar 

  71. Hofmeier H, Hoogenboom R, Wouters MEL, Schubert US (2005) J Am Chem Soc 127:2913

    Article  PubMed  CAS  Google Scholar 

  72. Dobrawa R, Lysetska M, Ballester P, Grune M, Wurthner F (2005) Macromol 38:1315

    Article  CAS  Google Scholar 

  73. Connors KA (1978) Binding consrtants, the measurement of molecular complexes stability. Wiley, New York

    Google Scholar 

  74. Chow CF, Lam MHW, Wong WY (2004) Inorg Chem 43:8387

    Article  PubMed  CAS  Google Scholar 

  75. Chow CF, Lam MHW, Sui H, Wong Dalton WY (2005) Trans 3:475

    Google Scholar 

  76. Nitschke JR, Lehn J-M (2003) Proc Natl Acad Sci USA 100:11970

    Article  PubMed  CAS  Google Scholar 

  77. Goral V, Nelen MI, Eliseev AV, Lehn J-M (2001) Proc Natl Acad Sci USA 98:1347

    Article  PubMed  CAS  Google Scholar 

  78. Ramirez J, Stadler AM, Rogez G, Drillon M, Lehn J-M (2009) Inorg Chem 48:2456

    Article  PubMed  CAS  Google Scholar 

  79. Lehn J-M (2007) Chem Soc Rev 36:151

    Article  PubMed  CAS  Google Scholar 

  80. Lehn J-M, Eliseev AV (2001) Science 291:2331

    Article  PubMed  CAS  Google Scholar 

  81. Liu Y-C, Yang Z-Y (2009) J Organomet Chem 694:3091

    Article  CAS  Google Scholar 

  82. Garcia-Santos I, Sanmartin J, Garcia-Deibe AM, Fondo M, Gomez E (2009) Inorg Chim Acta 363:193

    Article  Google Scholar 

  83. The 1H-NMR spectroscopic data of metallosupramolecular polymer P1 was described in the Supporting Information (Fig S1). The temperature dependence of the storage elastic modulus E′ and the loss elastic modulus E″ of the film P1 were described in the Supporting Information (Fig S2)

  84. Kwon TH, Jeong K-S (2006) Tetrahedron Lett 47:8539

    Article  CAS  Google Scholar 

  85. Kondo S, Hiraoka Y, Kurumatani N, Yano Y (2005) Chem Commun 1720

  86. Xie H, Yi S, Wu SJ (1999) Chem Soc Perkin Trans 2:2751

    Article  Google Scholar 

  87. Xie H, Yi S, Yang X, Wu S (1999) New J Chem 23:1105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially support by the Hong Kong Institute of Education (Project No. R6389 and RG65/2010-2011). I am indebted to Dr. Michael Lam Hon-Wah at the City University of Hong Kong for his assistance with the 1H-NMR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk-Fai Chow.

Electronic Supplementary Material

1H NMR spectra of polymer P1; and temperature dependence of the storage elastic modulus E′ and the loss elastic modulus E″ of the film of P1 are shown.

ESM 1

(DOC 7072 kb)

ESM 2

(JPEG 2933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, CF. Supramolecular Polymeric Chemosensor for Biomedical Applications: Design and Synthesis of a Luminescent Zinc Metallopolymer as a Chemosensor for Adenine Detection. J Fluoresc 22, 1539–1546 (2012). https://doi.org/10.1007/s10895-012-1092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1092-7

Keywords

Navigation