Skip to main content
Log in

A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope

Abstract

The authors have synthesized a phosphorescent probe of type SiO2-QD-MIP, where QD stands for Mn:ZnS quantum dots and MIP is a polymer coating that was molecularly imprinted with cephalexin. The nanoprobe with high specificity was prepared via sol-gel polymerization using thioglycolic acid (TGA)-modified QDs as luminescent materials, cephalexin as the template, 3-aminopropyltriethoxysilane as the functional monomer, and tetraethoxysilane as the crosslinking agent. The SiO2-QD-MIPs were characterized by X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The orange emission of the probe, with excitation/emission maxima at 295/590 nm, decreases linearly in the 2.5–50 μg·L−1 cephalexin concentration range with a limit of detection (LOD) of 0.81 μg·L−1. The nanoprobe was successfully applied to the determination of cephalexin in (spiked) raw milk and milk powder. The recoveries ranged from 91.7 to 103.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahm DF, Thornsberry C, Jones RN (1985) β-Lactam antibiotics: the first- and second-generation cephalosporins. Antimicrob Newsl 2:25–28. https://doi.org/10.1016/S0738-1751(85)80002-2

    Article  CAS  Google Scholar 

  2. Xie HL, Ma W, Liu LQ, Chen W, Peng C, Xu CL (2009) Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk. Anal Chim Acta 634:129–133. https://doi.org/10.1016/j.aca.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Quesada-Molina C, Claude B, García-Campaña AM, del Olmo-Iruela M, Morin P (2012) Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem 135:775–779. https://doi.org/10.1016/j.foodchem.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  4. The ministry of agriculture of the People’s Republic of China. Maximum residue limits for veterinary drugs in animal foods (Announcement of the Ministry of Agriculture [2002] No. 235). Beijing: Ministry of Agriculture, 2002-12-24. http://www.moa.gov.cn/gk/tzgg_1/gg/200302/t20030226_59300.htm. Accessed 24 October 2019

  5. Commission regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classific cation regarding maximum residue limits in foodstuffs of animal originp. Official Joumnal of the Europen Communities, 2010:15. http://data.europa.eu/eli/reg/2010/37(1)/oj. Accessed 24 October 2019

  6. Oliveira RV, De Pietro AC, Cass QB (2007) Quantification of cephalexin as residue levels in bovine milk by high-performance liquid chromatography with on-line sample cleanup. Talanta 71:1233–1238. https://doi.org/10.1016/j.talanta.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  7. Becker M, Zittlau E, Petz M (2004) Residue analysis of 15 penicillins and cephalosporins in bovine muscle, kidney and milk by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 520:19–32. https://doi.org/10.1016/j.aca.2004.04.022

    Article  CAS  Google Scholar 

  8. Suman PS, Ravi KBVV, Rabisankar D, Ganeswar M (2013) Determination of cephalexin monohydrate in pharmaceutical dosage form by stability-indicating RP-UFLC and UV spectroscopic methods. Sci Pharm 81:1029–1041. https://doi.org/10.3797/scipharm.1306-07

    Article  CAS  Google Scholar 

  9. Liu W, Zhang Z, Liu Z (2007) Determination of beta-lactam antibiotics in milk using micro-flow chemiluminescence system with on-line solid phase extraction. Anal Chim Acta 592:187–192. https://doi.org/10.1016/j.aca.2007.04.027

    Article  CAS  PubMed  Google Scholar 

  10. Bitas D, Samanidou V (2018) Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules 23:316–349. https://doi.org/10.3390/molecules23020316

    Article  CAS  PubMed Central  Google Scholar 

  11. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100:2495–2504. https://doi.org/10.1021/cr990099w

    Article  CAS  PubMed  Google Scholar 

  12. Lata K, Sharma R, Naik L, Rajput YS, Mann B (2015) Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chem 184:176–182. https://doi.org/10.1016/j.foodchem.2015.03.101

    Article  CAS  PubMed  Google Scholar 

  13. Baeza AN, Urraca JL, Chamorro R, Orellana G, Castellari M, Moreno-Bondi MC (2016) Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1474:121–129. https://doi.org/10.1016/j.chroma.2016.10.069

    Article  CAS  PubMed  Google Scholar 

  14. Ren X, Liu H, Chen L (2015) Fluorescent detection of chlorpyrifos using Mn(ii)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 182:193–200. https://doi.org/10.1007/s00604-014-1317-3

    Article  CAS  Google Scholar 

  15. Miao Y, Sun X, Lv J, Yan G (2018) Phosphorescent Mesoporous surface imprinting microspheres: preparation and application for transferrin recognition from biological fluids. ACS Appl Mater Interfaces 11:2264–2272. https://doi.org/10.1021/acsami.8b17772

    Article  CAS  Google Scholar 

  16. Jia M, Zhang Z, Li J, Shao H, Chen L, Yang X (2017) A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid. Sensors Actuators B Chem 252:934–943. https://doi.org/10.1016/j.snb.2017.06.090

    Article  CAS  Google Scholar 

  17. Zhang L, Chen L (2016) Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces 8:16248–16256. https://doi.org/10.1021/acsami.6b04381

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Li J, Wang X, Shen D, Chen L (2015) Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. ACS Appl Mater Interfaces 7:9118–9127. https://doi.org/10.1021/acsami.5b00908

    Article  CAS  PubMed  Google Scholar 

  19. Shan W, Liu R, Li C (2018) Highly selective and sensitive detection of Hg2+ based on förster resonance energy transfer between CdSe quantum dots and g-C3N4 nanosheets. Nanoscale Res Lett 13:1931–7573. https://doi.org/10.1186/s11671-018-2647-6

    Article  CAS  Google Scholar 

  20. Chullasat K, Nurerk P, Kanatharana P, Davis F, Bunkoed O (2017) A facile optosensing protocol based on molecularly imprinted polymer coated on CdTe quantum dots for highly sensitive and selective amoxicillin detection. Sensors Actuators B Chem 254:255–263. https://doi.org/10.1016/j.snb.2017.07.062

    Article  CAS  Google Scholar 

  21. Diazdiestra D, Thapa B, Beltranhuarac J, Weiner BR, Morell G (2017) L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosens Bioelectron 87:693–700. https://doi.org/10.1016/j.bios.2016.09.022

    Article  CAS  Google Scholar 

  22. Luo S, Miao Y, Guo J, Sun X, Yan G (2019) Phosphorimetric determination of 4-nitrophenol using mesoporous molecular imprinting polymers containing manganese(ii)-doped ZnS quantum dots. Microchim Acta 186:249–258. https://doi.org/10.1007/s00604-019-3362-4

    Article  CAS  Google Scholar 

  23. Stöber W, Fink A, Bohn E (1968) Controlled growth of Monodisperse silica spheres in the Micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  24. Wu X, Zhang Z, Li J, You H, Li Y, Chen L (2015) Molecularly imprinted polymers-coated gold nanoclusters for fluorescent detection of bisphenol A. Sensors Actuators B Chem 211:507–514. https://doi.org/10.1016/j.snb.2015.01.115

    Article  CAS  Google Scholar 

  25. Murugadoss G, Ramasamy V, Kumar MR (2014) Photoluminescence enhancement of hexagonal-phase ZnS: Mn nanostructures using 1-thioglycolic acid. Appl Nanosci 4:449–454. https://doi.org/10.1007/s13204-013-0218-9

    Article  CAS  Google Scholar 

  26. Steitz B, Axmann Y, Hofmann H, Petri-Fink A (2008) Optical properties of annealed Mn2+-doped ZnS nanoparticles. J Lumin 128:92–98. https://doi.org/10.1016/j.jlumin.2007.05.014

    Article  CAS  Google Scholar 

  27. National Pharmacopoeia Committee (2015) Pharmacopoeia of Peoples Republic of China: part 2. China Medical Science Press, Beijing

    Google Scholar 

  28. Wang X, Ma ZS, Liu QF (2018) Recovery of cephalexin with complexation. The Chinese J Process Eng 18:1232–1238. https://doi.org/10.12034/j.issn.1009-606X.218132

    Article  CAS  Google Scholar 

  29. Peng J, Liu D, Shi T, Tian H, Hui X, He H (2017) Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water. Anal Bioanal Chem 409:4157–4166. https://doi.org/10.1007/s00216-017-0365-z

    Article  CAS  PubMed  Google Scholar 

  30. Bian S, Chu X, Jin Y, Xing S, Zhang Y, Hu H (2013) A novel microsphere-based fluorescence immunochromatographic assay for monitoring cefalexin residues in plasma, milk, muscle and liver. Anal Methods 5:6441–6448. https://doi.org/10.1039/C3AY41487F

    Article  CAS  Google Scholar 

  31. Feier B, Gui A, Cristea C, Săndulescu R (2017) Electrochemical determination of cephalosporins using a bare boron-doped diamond electrode. Anal Chim Acta 976:25–34. https://doi.org/10.1016/j.aca.2017.04.050

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Wang Z, Mi T, Wenren L, Wen K (2014) A homogeneous fluorescence polarization immunoassay for the determination of cephalexin and cefadroxil in milk. Food Anal Methods 7:879–886. https://doi.org/10.1007/s12161-013-9695-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Project Technology Innovation Research and Development of Chengdu Science and Technology Bureau [2018-YF05-00765-SN], Foundation of Innovation Software Engineering for Young People in Sichuan [2019100], National Natural Science Foundation of China [31671954] and Student’s Platform for Innovation and Entrepreneurship Training Program [201810626003].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Li, Y., Wu, S. et al. A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 187, 40 (2020). https://doi.org/10.1007/s00604-019-4038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4038-9

Keywords

Navigation