Skip to main content
Log in

Investigation on Structural Design and Coupled Finite Element Analysis of CS 3L Feeder for ITER

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The central solenoid (CS) 3L feeder is applied to convey the coolant and electrical energy to the CS as well as house the instrumentation wiring. Due to cryogenic and complex electro-magnetic (EM) environment, CS 3L feeder suffers great thermal contract and huge Lorentz force. This paper aims at investigating the structural design of some key components and mechanical performance of CS 3L feeder. Due to complicated geometry and large scale, the electromagnetic–structural coupling analysis of CS 3L feeder is performed based on loading equivalent transfer principle, the results indicate that the main structure is reasonable, which provides a feasible option for practical engineering consideration. Finally, the further structural optimization, insulation, thermal analysis and seismic analysis are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Koizumi, Progress of ITER superconducting magnet procurement. Phys. Procedia 45, 225–228 (2013)

    Article  Google Scholar 

  2. Y. Song, Lu K., X. Huang, Y. Chen, T. Zhou, S. Liu et al., Status of design and R&D for the ITER feeder system procurement in China. IEEE Trans. Appl. Supercond. 22, 4800404 (2012)

    Article  Google Scholar 

  3. Y. Ilyin, J. Farek, P. Lorrière, M. Nannini, C.-Yu. Gung, P. Bauer et al., Structural analysis of ITER magnet feeders. IEEE Trans. Appl. Supercond. 22, 4202204 (2012)

    Article  Google Scholar 

  4. K. Yoshida, Y. Takahashi, T. Isono, N. Mitchell, Updating the design of the feeder components for the ITER magnet system. Fusion Eng. Des. 75–79, 241–246 (2005)

    Article  Google Scholar 

  5. M. Lei, Y. Song, S. Wang, Z. Wang, S. Liu, K. Lu et al., Thermo-mechanical analysis of the thermal shield for ITER magnet feeder. Fusion Eng. Des. 88, 666–669 (2013)

    Article  Google Scholar 

  6. J. Qin, Yu. Wu, M. Yu, Bo Liu, H. Liu, K.-P. Weiss et al., Manufacture of ITER feeder sample conductors. Fusion Eng. Des. 88, 1461–1464 (2013)

    Article  Google Scholar 

  7. R. Zanino, S. Giors, L. Savoldi Richard, CFD model of ITER CICC. Part VI: heat and mass transfer between cable region and central channel. Cryogenics 50, 158–166 (2010)

    Article  ADS  Google Scholar 

  8. N. Peng, L.Q. Liu, L.Y. Xiong, Thermal-hydraulic analysis of the cool-down for the ITER magnets. Cryogenics 57, 45–49 (2013)

    Article  ADS  Google Scholar 

  9. X. Huang, Y. Song, J. Zheng, X. Yu, W. Xiao, D. Gao et al., Consideration and research of high voltage insulation strategy for ITER feeder busbar joint. Fusion Eng. Des. 88, 696–700 (2013)

    Article  Google Scholar 

  10. D. Klimenko, V. Pasler, Safety of fusion magnets: model experiments to high current arcs at ITER busbars and feeder lines. Fusion Eng. Des. 87, 675–679 (2012)

    Article  Google Scholar 

  11. Y. Zhu, C. Liu, X. Liu, W. Wu, S. Wu, Design and analysis of the thermal shield of the prototype superconducting dipole magnet for GSI. IEEE Trans. Appl. Supercond. 23, 4001108 (2013)

    Article  Google Scholar 

  12. M. Gyimesi, D. Lavers, T. Pawlak, D. Ostergaard, Biot–Savart integration for bars and arcs. IEEE Trans. Magn. 29, 2389–2390 (1993)

    Article  ADS  Google Scholar 

  13. S.W. Zhang, Y.T. Song, Z.W. Wang, X. Ji, S.S. Du, Structural design study for ITER upper ELM coils. J. Fusion Energ. 33, 184–188 (2014)

    Article  Google Scholar 

  14. C. Jong, N. Mitchell, A. Alekseev, ITER magnet structural design criteria part I: main structural components and welds [R] (ITER Org., Cadarache, 2008)

    Google Scholar 

  15. S.W. Zhang, Y.T. Song, Z.W. Wang, H. Jin, S.S. Du, X. Ji et al., Structural and fracture mechanics analysis for the bracket of iter upper elm coil. J. Fusion Energ. 33, 304–308 (2014)

    Article  Google Scholar 

  16. S.W. Zhang, Y.T. Song, Z.W. Wang, S. Lu, X. Ji, S.S. Du et al., Design study of support for ITER ELM coils. J. Fusion Energ. 33, 252–257 (2014)

    Article  Google Scholar 

  17. W.U. Cheng, P.A.N. Wanjiang, Research and analysis on tensile and compressive fatigue performance of cryogenic axial insulation breaks. Plasma Sci. Technol. 15, 716–720 (2013)

    Article  Google Scholar 

  18. Y. Ren, Y. Tan, F. Wang, W. Chen, J. Zhu, J. Li et al., Thermal-hydraulic analysis of a model coil for 40-T hybrid magnet superconducting outsert. IEEE Trans. Appl. Supercond. 22, 4900105 (2012)

    Article  Google Scholar 

  19. J.-P. Girard, G. Grünthal, M. Nicolas, EISS Team, Design earthquakes for ITER in Europe at Cadarache. Fusion Eng. Des. 75–79, 1109–1113 (2005)

    Article  Google Scholar 

  20. www.iaea.org

  21. www.iter.org

Download references

Acknowledgments

The authors are thankful to the related experts of the International Thermonuclear Experimental Reactor organization. The views and opinions expressed herein do not necessarily reflect those of the International Thermonuclear Experimental Reactor organization. This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2008CB717900), the Special Fund of Talent Development of Anhui Province (Grant No. 2009Z056) and the Fund of Anhui Educational Committee (Grant No. KJ2013A072,KJ2011Z054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YinFeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Song, Y. & Chen, Y. Investigation on Structural Design and Coupled Finite Element Analysis of CS 3L Feeder for ITER. J Fusion Energ 33, 670–676 (2014). https://doi.org/10.1007/s10894-014-9728-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9728-z

Keywords

Navigation