Skip to main content
Log in

Numerical and experimental analysis of AC loss for CFETR CS model coil

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The central solenoid (CS) is an important component of China Fusion Engineering Test Reactor, for producing, forming and stabilizing plasma in the superconducting tokamak. It is a complicated work to design and manufacture the large superconducting CS magnet, so it is meaningful to design a central solenoid model coil (CSMC) and analyze its electromagnetic properties in advance. In this paper, the structure, design parameters and magnetic field distribution of the CS model coil are discussed. The peak power of radial and axial turn conductors and time bucket loss are analyzed by using piecewise-linear method. The CSMC AC loss with different Nb3Sn CICCs and AC loss of ITER CS coil are compared. The special electrometric method to measure AC loss of the CS model coil for future reference is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Wan, S. Ding, J. Qian et al., Physics design of CFETR: determination of the device engineering parameters. IEEE Trans. Plasma Sci. 42, 495 (2014). doi:10.1109/TPS.2013.2296939

    Article  Google Scholar 

  2. Y. Wan, Mission of CFETR. in Proceedings ITER Training Forum Second Workshop MFE Develop. Strategy, Hefei, China, 1 (2012)

  3. Y.T. Song, S.T. Wu, J.G. Li et al., Concept design of CFETR Tokamak machine. IEEE Trans. Plasma Sci. 42, 503 (2014). doi:10.1109/TPS.2014.2299277

    Article  Google Scholar 

  4. X. Liu, J. Zheng, Z. Luo et al., Conceptual design and analysis of CFETR magnets. in The 25th Symposium on Fusion Engineering (SOFE). IEEE, 1 (2013). doi: 10.1109/SOFE.2013.6635306

  5. X.G. Liu, X.W. Wang, D.P. Yin et al., Electromagnetic optimization and preliminary mechanical analysis of the CFETR CS Model Coil. IEEE Trans. Plasma Sci. 44, 1559 (2016). doi:10.1109/TPS.2016.2521892

    Article  Google Scholar 

  6. J.G. Qin, T.J. Xue, B. Liu et al., Cabling technology of Nb3Sn conductor for CFETR central solenoid model coil. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi:10.1109/TASC.2016.2525923

    Google Scholar 

  7. H. Jin, Y. Wu, F. Long et al., Mechanical properties of preliminary designed insulation for CFETR CSMC. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi:10.1109/TASC.2016.2518490

    Google Scholar 

  8. Y.L. Yang, Y. Wu, B. Liu, A new numerical model for the quench simulation in CFETR CSMC conductor. IEEE Trans. Appl. Supercond. 26, 1 (2016). doi:10.1109/TASC.2016.2532461

    Google Scholar 

  9. A. Nijhuis, N.H.W. Noordman, O.A. Shevchenko et al., Electromagnetic and mechanical characterization of ITER CS–MC conductors affected by transverse cyclic loading, part 1: coupling current losses. IEEE Trans. Appl. Supercond. 9, 1069 (1999). doi:10.1109/77.783482

    Article  Google Scholar 

  10. W. Zhou, X.Y. Fang, J. Fang et al., DC performance and AC loss of cable-in-conduit conductors for International thermonuclear experimental reactor. Nucl. Sci. Tech. 27, 1 (2016). doi:10.1007/s41365-016-0061-2

    Article  MathSciNet  Google Scholar 

  11. W. Chung, Y. Chu, S. Lee et al., Analysis of the KSTAR central solenoid model coil experiment. IEEE Trans. Appl. Supercond. 17, 1338 (2007). doi:10.1109/TASC.2007.899989

    Article  Google Scholar 

  12. Y. Shi, Y. Wu, Q.W. Hao et al., The AC loss evaluation of central solenoid model coil for CFETR. Fusion Eng. Des. 107, 100 (2016). doi:10.1016/j.fusengdes.2016.03.070

    Article  Google Scholar 

  13. A. Devred, I. Backbier, D. Bessette et al., Status of ITER conductor development and production. IEEE Trans. Appl. Supercond. 22, 4804909 (2012). doi:10.1109/TASC.2012.2182980

    Article  Google Scholar 

  14. B. Liu, Y. Wu, A. Devred et al., Conductor performance of TFCN4 and TFCN5 samples for ITER TF coils. IEEE Trans. Appl. Supercond. 25, 1 (2015). doi:10.1109/TASC.2014.2376931

    Google Scholar 

  15. D. Bessette, Design of a cable-in-conduit conductor to withstand the 60 000 electromagnetic cycles of the ITER central solenoid. IEEE Trans. Appl. Supercond. 24, 1 (2014). doi:10.1109/TASC.2013.2282399

    Article  Google Scholar 

  16. L. Feng, W. Yu, L. Fang et al., Manufacture and acceptance test of the full size ITER PF5 conductor sample. IEEE Trans. Appl. Supercond. 22, 4805404 (2012). doi:10.1109/TASC.2011.2175432

    Article  Google Scholar 

  17. F. Gauthier, 15MA CS thermal hydraulic analysis with the SuperMagnet code. in ITER_D_APUB8, v 1.1, pp: 35–36, Aug. 2012

  18. A.M. Campbell, A general treatment of losses in multifilamentary superconductors. Cryogenics 22, 3 (1982). doi:10.1016/0011-2275(82)90015-7

    Article  Google Scholar 

  19. M.N. Wilson, Superconducting Magnets (Oxford Science Publications, London, 1987), pp. 177–192

    Google Scholar 

  20. L. Bottura, B. Bordini, J c (B, T, ε) parameterization for the ITER Nb3Sn production. IEEE Trans. Appl. Supercond. 19, 1521 (2009). doi:10.1109/TASC.2009.2018278

    Article  Google Scholar 

  21. L. Bottura, A practical fit for the critical surface of NbTi. IEEE Trans. Appl. Supercond. 10, 2000 (1054). doi:10.1109/77.828413

    Google Scholar 

  22. B. Xiao, P. Weng, Integrated analysis of the electromagnetical, thermal, fluid flow fields in a Tokamak. Fusion Eng. Des. 81, 1549 (2006). doi:10.1016/j.fusengdes.2005.10.013

    Article  Google Scholar 

  23. T. Suwa, Y. Nabara, H. Ozeki et al., Analysis of internal-Tin Nb3Sn conductors for ITER central solenoid. IEEE Trans. Appl. Supercond. 25, 4201704 (2015). doi:10.1109/TASC.2014.2376990

    Article  Google Scholar 

  24. Y. Takahashi, K. Matsui, K. Nishii et al., AC loss measurement of 46 kA-13T Nb3Sn conductor for ITER. IEEE Trans. Appl. Supercond. 11, 1546 (2001). doi:10.1109/77.920071

    Article  Google Scholar 

  25. Y. Wang, X. Guan, J. Dai, Review of AC loss measuring methods for HTS tape and unit. IEEE Trans. Appl. Supercond. 24, 1 (2014). doi:10.1109/TASC.2014.2340457

    Google Scholar 

  26. Z. Jiang, N. Amemiya, An experimental method for total AC loss measurement of high T c superconductors. Supercond. Sci. Technol. 17, 371 (2004). doi:10.1088/0953-2048/17/3/014

    Article  Google Scholar 

  27. S. Lee, Y. Chu, W.H. Chung et al., AC loss characteristics of the KSTAR CSMC estimated by pulse test. IEEE Trans. Appl. Supercond. 16, 771 (2006). doi:10.1109/TASC.2006.870541

    Article  Google Scholar 

  28. W. Zhou, J. Fang, B. Liu et al., AC loss analysis of central solenoid model coil for China fusion engineering test reactor. IEEE Trans. Appl. Supercond. 26, 5900505 (2016). doi:10.1109/TASC.2016.2580564

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the members of CFETR CS model coil design team and ASIPP crew for providing some pictures. We would like to thank Arend Nijhuis from University of Twente and Zhenan Jiang from Victoria University of Wellington for measurement discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Fang, XY., Fang, J. et al. Numerical and experimental analysis of AC loss for CFETR CS model coil. NUCL SCI TECH 28, 142 (2017). https://doi.org/10.1007/s41365-017-0301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0301-0

Keywords

Navigation