Skip to main content
Log in

Diel Variation in Fig Volatiles Across Syconium Development: Making Sense of Scents

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as α-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry’s law constants at ambient temperatures. Therefore, factors other than Henry’s law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balao, F., Herrera, J., Talavera, S., and Dötterl, S. 2011. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72:601–609.

    Article  PubMed  CAS  Google Scholar 

  • Borges, R. M., Bessière, J.-M., and Hossaert-Mckey, M. 2008. The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct. Ecol. 22:484–493.

    Article  Google Scholar 

  • Borges, R. M., Ranganathan, Y., Krishnan, A., Ghara, M., and Pramanik, G. 2011. When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecol 37:611–618.

    Article  Google Scholar 

  • Cook, J. M. and Rasplus, J.-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18:241–248.

    Article  Google Scholar 

  • Copolovici, L. O. and Niinemets, U. 2005. Temperature dependencies of Henry’s law constants and octanol/water partition coefficients for key plant volatile monoterpenoids. Chemosphere 61:1390–400.

    Article  PubMed  CAS  Google Scholar 

  • D'Alessandro, M., Brunner, V., von Mérey, G., and Turlings, T. C. J. 2009. Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J. Chem. Ecol. 35:999–1008.

    Article  PubMed  Google Scholar 

  • de Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.

    Article  PubMed  Google Scholar 

  • Dearden, J. C. and Schüürmann, G. 2003. Quantitative structure–property relationships for predicting Henry’s law constant from molecular structure. Environ. Toxicol. Chem. 22:1755–1770.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M. and Baldwin, I. T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., van Loon, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chem. Biol. 5:317–324.

    Article  CAS  Google Scholar 

  • Dudareva, N. and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627–634.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., Pichersky, E., and Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiol 135:1893–1902.

    Article  PubMed  CAS  Google Scholar 

  • Dudareva, N., Negre, F., Nagegowda, D. A., and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25:417–440.

    Article  CAS  Google Scholar 

  • Frost, C. J., Appel, H. M., Carlson, J. E., de Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol. Lett. 10:490–498.

    Article  PubMed  Google Scholar 

  • Galil, J. and Eisikowitch, D. 1968. Flowering cycles and fruit types of Ficus sycomorus in Israel. New Phytol. 67:745–758.

    Article  Google Scholar 

  • Ghara, M. and Borges, R. M. 2010. Comparative life-history traits in a fig wasp community: implications for community structure. Ecol. Entomol. 35:139–148.

    Article  Google Scholar 

  • Ghara, M., Kundanati, L., and Borges, R. M. 2011. Nature’s Swiss army knives: ovipositor structure mirrors ecology in a multitrophic fig wasp community. PLoS One 6(8):e23642.

    Article  PubMed  CAS  Google Scholar 

  • Gouinguené, S. P. and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.

    Article  PubMed  Google Scholar 

  • Grison-Pigé, L., Bessière, J.-M., and Hossaert-Mckey, M. 2002a. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs. J. Chem. Ecol. 28:283–295.

    Article  PubMed  Google Scholar 

  • Grison-Pigé, L., Hossaert-Mckey, M., Greeff, J. M., and Bessière, J.-M. 2002b. Fig volatile compounds—a first comparative study. Phytochemistry 61:61–71.

    Article  PubMed  Google Scholar 

  • Heil, M. and Ton, J. 2008. Long-distance signaling in plant defence. Trends Plant Sci. 13:264–272.

    Article  PubMed  CAS  Google Scholar 

  • Helsper, J. P. F. G., Davies, J. A., Bouwmeester, H. J., Krol, A. F., and van Kampen, M. H. 1998. Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95.

    Article  CAS  Google Scholar 

  • Hendel-Rahmanim, K., Masci, T., Vainstein, A., and Weiss, D. 2007. Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  • Herre, E. A., Jandér, K. C., and Machado, C. A. 2008. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39:439–458.

    Article  Google Scholar 

  • Hilker, M. and Meiners, T. 2011. Plants and insect eggs: How do they affect each other? Phytochemistry 72:1612–1623.

    Article  PubMed  CAS  Google Scholar 

  • Holopainen, J. K. and Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15:176–184.

    Article  PubMed  CAS  Google Scholar 

  • Hossaert-Mckey, M., Soler, C., Schatz, B., and Proffit, M. 2010. Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20:75–88.

    Article  Google Scholar 

  • Ibrahim, M. A., Mäenpää, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikädnen, L., Tervahauta, A., Kärenlampi, S., Holopainen, J. K., and Oksanen, E. J. 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. J. Exp. Bot. 61:1583–1595.

    Article  PubMed  CAS  Google Scholar 

  • Kerdelhué, C. and Rasplus, J.-Y. 1996. Non-pollinating Afrotropical fig wasps affect the fig–pollinator mutualism in Ficus within the subgenus Sycomorus. Oikos 75:3–14.

    Article  Google Scholar 

  • Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33:23–88.

    Article  CAS  Google Scholar 

  • Knudsen, J. T., Eriksson, R., Gershenzon, J., and Stahl, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.

    Article  Google Scholar 

  • Krishnan, A., Muralidharan, S., Sharma, L., and Borges, R. M. 2010. A hitchhiker’s guide to a crowded syconium: how do fig nematodes find the right ride? Funct. Ecol. 24:741–749.

    Article  Google Scholar 

  • Langfelder, P. and Horvath, S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinfo. 9:559.

    Article  Google Scholar 

  • Loreto, F. and Schnitzler, J. P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:154–166.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin, J. N., Hamilton-Kemp, T. R., Andersen, R. A., and Hildebrand, D. F. 1990. Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus × domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry 29:2473–2477.

    Article  CAS  Google Scholar 

  • Lucas-Barbosa, D., van Loon, J. J. A., and Dicke, M. 2011. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654.

    Article  PubMed  CAS  Google Scholar 

  • Matile, P. and Altenburger, R. 1988. Rhythms of fragrance emission in flowers. Planta 174:242–247.

    Article  CAS  Google Scholar 

  • Meylan, W. M. and Howard, P. H. 2005. Estimating octanol–air partition coefficients with octanol–water partition coefficients and Henry’s law constants. Chemosphere 61:640–644.

    Article  PubMed  CAS  Google Scholar 

  • Morinaga, S. I., Kumano, Y., Ota, A., Yamaoka, R., and Sakai, S. 2009. Day–night fluctuations in floral scent and their effects on reproductive success in Lilium auratum. Popul. Ecol. 51:187–195.

    Article  Google Scholar 

  • Nagegowda, D. A., Rhodes, D., and Dudareva, N. 2010. The role of the methyl-erythritol-phosphate (MEP) pathway in rhythmic emission of volatiles, pp. 139–153, in C. A. Rebeiz, C. Benning, H. J. Bohnert, H. Daniell, J. K. Hoober, H. K. Lichtenthaler, A. R. Portis, and B. C. Tripathy (eds.), The Chloroplast: Basics and Application. Springer, Dordrecht.

    Chapter  Google Scholar 

  • Niinemets, U. and Reichstein, M. 2003. Controls on the emission of plant volatiles through stomata: A sensitivity analysis. J. Geophys. Res. 108(D7):4211. doi:10.1029/2002JD002626.

    Article  Google Scholar 

  • Niinemets, U., Loreto, F., and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9:180–186.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets, U., Monson, R. K., Arneth, A., Ciccioli, P., Kesselmeier, J., Kuhn, U., Noe, S. M., Peñuelas, J., and Staudt, M. 2010. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832.

    Article  CAS  Google Scholar 

  • Noe, S. M., Ciccioli, P., Brancaleoni, E., Loreto, F., and Niinemets, U. 2006. Emissions of monoterpenes linalool and ocimene respond differently to environmental changes due to differences in physico-chemical characteristics. Atmos. Environ. 40:4649–4662.

    Article  CAS  Google Scholar 

  • Owen, S. M. and Peñuelas, J. 2005. Opportunistic emissions of volatile isoprenoids. Trends Plant Sci 10:420–426.

    Article  PubMed  CAS  Google Scholar 

  • Pichersky, E., Sharkey, T. D., and Gershenzon, J. 2006. Plant volatiles: a lack of function or a lack of knowledge? Trends Plant Sci. 11:421.

    Article  PubMed  CAS  Google Scholar 

  • Proffit, M., Schatz, B., Borges, R. M., and Hossaert-Mckey, M. 2007. Chemical mediation and niche partitioning in non-pollinating fig-wasp communities. J. Anim. Ecol. 76:296–303.

    Article  PubMed  Google Scholar 

  • Proffit, M., Schatz, B., Bessière, J.-M., Chen, C., Soler, C., and Hossaert-Mckey, M. 2008. Signalling receptivity: comparison of the emission of volatile compounds by figs of Ficus hispida before, during and after the phase of receptivity to pollinators. Symbiosis 45:15–24.

    CAS  Google Scholar 

  • Proffit, M., Chen, C., Soler, C., Bessière, J.-M., Schatz, B., and Hossaert-Mckey, M. 2009. Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms?—The case of figs and fig wasps. Entomol. Exp. Appl 131:46–57.

    Article  CAS  Google Scholar 

  • R Development Core Team 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org. ISBN 3-900051-07-0.

    Google Scholar 

  • Raguso, R. A. 2008. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39:549–569.

    Article  Google Scholar 

  • Raguso, R. A., Levin, R. A., Foose, S. E., Holmberg, M. W., and McDADE, L. A. 2003. Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284.

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan, Y. and Borges, R. M. 2009. Predatory and trophobiont-tending ants respond differently to fig and fig wasp volatiles. Anim. Behav. 77:1539–1545.

    Article  Google Scholar 

  • Ranganathan, Y. and Borges, R. M. 2010. Reducing the babel in plant volatile communication: using the forest to see the trees. Plant Biol. 12:735–742.

    Article  PubMed  CAS  Google Scholar 

  • Ranganathan, Y. and Borges, R. M. 2011. To transform or not to transform: that is the dilemma in the statistical analysis of plant volatiles. Plant Sign. Behav. 6:113–116.

    Article  CAS  Google Scholar 

  • Ranganathan, Y., Ghara, M., and Borges, R. M. 2010. Temporal associations in fig–wasp–ant interactions: diel and phenological patterns. Entomol. Exp. Appl. 137:50–61.

    Article  Google Scholar 

  • Rodriguez-Saona, C. R., Rodriguez-Saona, L. E., and Frost, C. J. 2009. Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J. Chem. Ecol. 35:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Sagae, M., Oyama-Okubo, N., Ando, T., Marchesi, E., and Nakayama, M. 2008. Effect of temperature on the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci. Biotech. Biochem. 72:110–115.

    Article  CAS  Google Scholar 

  • Snoeren, T. A. L., Mumm, R., Poelman, E. H., Yang, Y., Pichersky, E., and Dicke, M. 2010. The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Diadegma semiclausum. J. Chem. Ecol. 36:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, M., Bais, H. P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J. M. 2004. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135:47–58.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, G. P., Okamoto, T., Kawakita, A., Goto, R., and Kato, M. 2010. Chemical ecology of obligate pollination mutualisms: testing the ‘private channel’ hypothesis in the BreyniaEpicephala association. New Phytol. 186:995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Theis, N. and Raguso, R. A. 2005. The effect of pollination on floral fragrance in thistles. J. Chem. Ecol. 31:2581–2600.

    Article  PubMed  CAS  Google Scholar 

  • Tholl, D., Sohrabi, R., Huh, J.-H., and LEE, S. 2011. The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646.

    Article  PubMed  CAS  Google Scholar 

  • Weston, D. J., Gunter, L. E., Rogers, A., and Wullschleger, S. D. 2008. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biol. 2:16.

    Article  Google Scholar 

  • Wilkinson, M. J., Owen, S. M., Possell, M., Hartwell, J., Gould, P., Hall, A., Vickers, C., and Hewitt, C. N. 2006. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J. 47:960–968.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B. and Horvath, S. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4: Article 17.

  • Zhang, S., Wei, J., Guo, X., Liu, T-X., and Kang, L. 2010. Functional synchronization of biological rhythms in a tritrophic system. PLoS One 5(6):e11064. doi:10.1371/journal.pone.0011064.

Download references

Acknowledgments

This work was funded by the Department of Biotechnology and the Ministry of Environment and Forests, Government of India. We thank the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) for supporting JMB’s travel. We thank Mahua Ghara, Lakshy Katariya, Anusha Krishnan, and Pratibha Yadav for critical comments on the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee M. Borges.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, R.M., Bessière, JM. & Ranganathan, Y. Diel Variation in Fig Volatiles Across Syconium Development: Making Sense of Scents. J Chem Ecol 39, 630–642 (2013). https://doi.org/10.1007/s10886-013-0280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0280-5

Keywords

Navigation