Skip to main content
Log in

Confluence of Singularities of Nonlinear Differential Equations via Borel–Laplace Transformations

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

Borel summable divergent series usually appear when studying solutions of analytic ODE near a multiple singular point. Their sum, uniquely defined in certain sectors of the complex plane, is obtained via the Borel–Laplace transformation. This article shows how to generalize the Borel–Laplace transformation in order to investigate bounded solutions of parameter dependent nonlinear differential systems with two simple (regular) singular points unfolding a double (irregular) singularity. We construct parametric solutions on domains attached to both singularities, that converge locally uniformly to the sectoral Borel sums. Our approach provides a unified treatment for all values of the complex parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. If instead f(x, 𝜖,0) was only O(|x|+|𝜖|), and \(u_{\pm \sqrt \epsilon }\in \mathbb {C}^{m}\) were the unique solutions of \(0=M u_{\pm \sqrt \epsilon }+f(\pm \sqrt \epsilon ,u_{\pm \sqrt \epsilon },\epsilon )\), with u ±0 = 0, then the change of variable \(y\,\mapsto \, y-\tfrac {1}{2\sqrt \epsilon }\left (u_{+\sqrt \epsilon }(x\,+\,\sqrt \epsilon ) -\!\right .\) \(\left . \! u_{-\sqrt \epsilon }(x\,-\,\sqrt \epsilon )\right )\), analytic in (x, 𝜖), would bring the system (10) to a one with f(x, 𝜖,0)=O(x 2 −𝜖).

  2. For m = 1, it’s been shown in [22, Proposition 3.1], cf. also [10, Lemma 1], that the family (13) is in fact locally orbitally analytically equivalent to a family (10).

  3. These α will later correspond to the direction of the unfolded Laplace integrals (8), and \(\mathbf {T}_{\alpha }^{\pm }(\varLambda , \sqrt \epsilon )\) to their strips of convergence.

  4. More precisely to a covering space of the x-plane ramified at \(\{\sqrt \epsilon ,-\!\sqrt \epsilon \}\), the Riemann surface of t(x, 𝜖)(9).

  5. Zhang also unfolds the Laplace integral (3), unlike us he chooses to unfold the kernel \(e^{-\frac {\xi }{x}}d\xi \) by \(\left (\frac {x-\sqrt \epsilon \xi }{x+\sqrt \epsilon \xi }\right )^{\frac {1}{2 \sqrt \epsilon }}d\xi =e^{-t(x,\xi ^{2}\epsilon )\cdot \xi }d\xi \), in our notation.

References

  1. Balser W. Formal power series and linear systems of meromorphic ordinary differential equations. Springer; 2000.

  2. Balser W. Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations. Ann Fac Sci Toulouse 2005;14:593–608.

    Article  MathSciNet  MATH  Google Scholar 

  3. Braaksma BLJ. Laplace integrals in singular differential and difference equations. Proc. Conf. Ordinary and Partial Diff. Eq., Dundee 1978, Lect. Notes Math. 827, Springer-Verlag; 1980.

  4. Branner B, Dias K. Classification of complex polynomial vector fields in one complex variable. J Diff Eq Appl 2010;16:463–517.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bremermann H. Distributions, Complex variables, and Fourier Transforms: Addison-Wesley Publ. Comp; 1965.

  6. Canalis-Durand M, Mozo-Fernández J, Schäfke R. Monomial summability and doubly singular differential equations. J Diff Eq 2007;233:485–511.

    Article  MATH  Google Scholar 

  7. Costin O. On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations. Duke Math J 1998;93:289–344.

    Article  MathSciNet  MATH  Google Scholar 

  8. Doetsch G. 1974. Introduction to the theory and application of the Laplace transformation. Springer.

  9. Fruchard A, Schäfke R. 2013. Composite asymptotic expansions, Lect. Notes Math. 2066. Springer.

  10. Glutsyuk A. Confluence of singular points and the nonlinear Stokes phenomena. Trans Moscow Math Soc 2001;62:49–95.

    MathSciNet  Google Scholar 

  11. Glutsyuk A. Confluence of singular points and Stokes phenomena. Normal forms, bifurcations and finiteness problems in differential equations, NATO Sci. Ser. II Math. Phys. Chem. 137, Kluwer Acad. Publ; 2004.

  12. Hurtubise J, Lambert C, Rousseau C. Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank k. Moscow Math J 2014;14:309–338.

    MathSciNet  MATH  Google Scholar 

  13. Ilyashenko Y, Yakovenko S. Lectures on analytic differential equations, Graduate Studies in Mathematics. Amer Math Soc 2008;86.

  14. Lambert C, Rousseau C. Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1. Moscow Math J 2012;12:77–138.

    MathSciNet  MATH  Google Scholar 

  15. Malgrange B. Sommation des séries divergentes. Expositiones Mathematicae 1995;13:163–222.

    MathSciNet  MATH  Google Scholar 

  16. Malmquist J. Sur l’étude analytique des solutions d’un système d’équations différentielles dans le voisinage d’un point singulier d’indétermination. Acta Math 1941;73:87–129.

    Article  MathSciNet  Google Scholar 

  17. Martinet J, Ramis J-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ IHES 1982;55:63–164.

    Article  MathSciNet  MATH  Google Scholar 

  18. Martinet J, Ramis J-P. Théorie de Galois differentielle et resommation. Computer Algebra and Differential Equations. In: Tournier E, editors. Acad. Press; 1988.

  19. Parise L. Confluence de singularités régulieres d’équations différentielles en une singularité irréguliere. IRMA Strasbourg: Modèle de Garnier, thèse de doctorat; 2001. http://www-irma.u-strasbg.fr/annexes/publications/pdf/01020.pdf.

    Google Scholar 

  20. Ramis J-P, Sibuya Y. Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type. Asymptotic Anal 1989;2: 39–94.

    MathSciNet  MATH  Google Scholar 

  21. Rousseau C. Modulus of orbital analytic classification for a family unfolding a saddle-node. Moscow Math J 2005;5:245–268.

    MathSciNet  MATH  Google Scholar 

  22. Rousseau C, Teyssier L. Analytical moduli for unfoldings of saddle-node vector filds. Moscow Math J 2008;8:547–614.

    MathSciNet  MATH  Google Scholar 

  23. Sibuya Y. Asymptotic and computational analysis. Lect. Notes Pure Appl. Math. 1990;124:393–401.

    MathSciNet  Google Scholar 

  24. Sternin Yu, Shatalov VE. On the Confluence phenomenon of Fuchsian equations. J Dynam Control Syst 1997;3:433–448.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang C. Confluence et phénomène de Stokes. J Math Sci Univ Tokyo 1996;3: 91–107.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I am very grateful to Christiane Rousseau for many helpful discussions and to Reinhard Schäfke and Loïc Teyssier for their interest in my work. The paper was prepared during my doctoral studies at Université de Montreal and finalized during my stay at Université de Strasbourg I want to thank both institutions for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Klimeš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimeš, M. Confluence of Singularities of Nonlinear Differential Equations via Borel–Laplace Transformations. J Dyn Control Syst 22, 285–324 (2016). https://doi.org/10.1007/s10883-015-9290-7

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-015-9290-7

Keywords

Mathematics Subject Classifications (2010)

Navigation