Skip to main content
Log in

Surfactant Assisted Hydrothermal Synthesis of Superparamagnetic ZnFe2O4 Nanoparticles as an Efficient Visible-Light Photocatalyst for the Degradation of Organic Pollutant

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Super paramagnetic ZnFe2O4 nanoparticles were prepared by a surfactant assisted (ethylamine) hydrothermal method along with heat treatment. The nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, high resolution scanning electron microscopy, Transmission electron microscopy, vibrating sample magnetometer and diffuse reflectance spectra technique. From the analyses, influence of calcination temperature on the structural, vibrational, morphological, magnetic and optical properties of ZnFe2O4 nanoparticles were investigated. The ZnFe2O4 nanoparticles with an average particle size of 17 nm showed high photocatalytic activity in the degradation of methylene blue (90 %). This work demonstrates that ZnFe2O4 can be used as a potential monocomponent in visible-light photocatalysis for the degradation of organic pollutants. Furthermore, the products were super paramagnetic and could be conveniently separated within 15 min and recycled by using simple magnet, which is very beneficial for the degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes (2008). Nature 452, 301.

    Article  CAS  Google Scholar 

  2. Manoj Pudukudy and Zahira Yaakob (2014). Appl. Surf. Sci. 292, 520.

    Article  CAS  Google Scholar 

  3. Manoj Pudukudy and Zahira Yaakob (2013). Superlattices Microstruct. 63, 47.

    Article  CAS  Google Scholar 

  4. B. Neppolian, C. Wang, and M. Ashokkumar (2014). Ultrason. Sonochem. 21, 1948.

    Article  CAS  Google Scholar 

  5. Manoj Pudukudy, Ain Hetieqa, and Zahira Yaakob (2014). Appl. Surf. Sci. 319, 221.

    Article  CAS  Google Scholar 

  6. T. Ochiai, H. Nanba, T. Nakagawa, K. Masuko, K. Nakata, T. Murakami, R. Nakano, M. Hara, Y. Koide, T. Suzuki, M. Ikekita, Y. Morito, and A. Fujishima (2012). Catal. Sci. Technol. 2, 76.

    Article  CAS  Google Scholar 

  7. Manoj Pudukudy, Zahira Yaakob, Ramesh Rajendran, and Thushara Kandaramath (2014). Reac. Kinet. Mech. Cat. 112, 527.

    Article  CAS  Google Scholar 

  8. S. Ganesh Babu, R. Vinoth, B. Neppolian, D. D. Dionysiou, and M. Ashokkumar (2015). J. Hazard. Mater. 291, 83.

    Article  Google Scholar 

  9. Manoj Pudukudy and Zahira Yaakob (2014). Solid. State. Sci. 30, 78.

    Article  CAS  Google Scholar 

  10. S. Ganesh Babu, R. Vinoth, P. Surya Narayana, Detlef Bahnemann, and B. Neppolian (2015). APL Materials 3, 104415.

    Article  Google Scholar 

  11. Manoj Pudukudy and Zahira Yaakob (2014). Chem. Pap. 68, 1087.

    Article  CAS  Google Scholar 

  12. Ramesh Rajendran, Manoj Pudukudy, Subramaniam Sohila, Zahira Yaakob, Muhammad Syukri, and Abd Rahaman (2014). J. Mater. Sci. : Mater. Electron. 25, 4755.

    CAS  Google Scholar 

  13. Manoj Pudukudy and Zahira Yaakob (2015). J Clust Sci. 26, 1187.

    Article  CAS  Google Scholar 

  14. R. Rameshbabu, Niraj Kumar, A. Karthigeyan, and B. Neppolian (2016). Mater. Chem. Phys. 181, 106.

    Article  CAS  Google Scholar 

  15. J. Popplewell and L. Sakhnini (1995). J. Magn. Magn. Mater. 149, 72.

    Article  CAS  Google Scholar 

  16. R. S. Molday and D. Mackenzie (1982). J. Immunol. Methods. 52, 353.

    Article  CAS  Google Scholar 

  17. L. Gunther (1990). Phys. World. 3, 28.

    Article  Google Scholar 

  18. H. H. Kung and M. C. Kung (1985). Adv. Catal. 33, 159.

    CAS  Google Scholar 

  19. C. W. Jung and P. Jacobs (1995). Magn. Reson. Imaging. 13, 661.

    Article  CAS  Google Scholar 

  20. C. V. G. Reddy, S. V. Manorama, and V. J. Rao (2000). J. Mater. Sci. Lett. 19, 775.

    Article  CAS  Google Scholar 

  21. M. G. Naseri, E. B. Saion, M. Hashim, A. H. Sharri, and H. A. Ahangar (2011). Solid. State. Commun. 151, 1031.

    Article  CAS  Google Scholar 

  22. G. Zhang, C. Li, F. Cheng, and J. Chen (2007). Sens. Actuators. B: Chem. 120, 403.

    Article  CAS  Google Scholar 

  23. Ibrahim Sharifi, H. Shokrollahi, and S. Amiri (2013). J. Magn. Magn. Mater. 324, 903.

    Article  Google Scholar 

  24. F. Li, H. Wang, L. Wang, and J. Wang (2007). J. Magn. Magn. Mater. 309, 295.

    Article  CAS  Google Scholar 

  25. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. lkeda, S. Sun, and E. E. Fullerton (2002). J. Phys. D: Appl. Phys. 35, R157.

    Article  CAS  Google Scholar 

  26. J. Bai and J. P. Wang (2005). Appl. Phys. Lett. 87, 152502.

    Article  Google Scholar 

  27. J. Qiu, C. Wang, and M. Gu (2004). Mater. Sci. Eng. B. 112, 1.

    Article  Google Scholar 

  28. M. Wang, A. I. Zhihui, and L. Zhang (2008). J. Phys. Chem. C. 112, 13163.

    Article  CAS  Google Scholar 

  29. M. H. Habibi and A. H. Habibi (2013). J. Therm. Anal. Calorim. 113, 843.

    Article  CAS  Google Scholar 

  30. P. Yaseneva, M. Bowker, and G. Hutchings (2011). Phys. Chem. Chem. Phys. 13, 18609.

    Article  CAS  Google Scholar 

  31. A. Shanmugavani, R. KalaiSelvan, Samar Layek, and C. Sanjeeviraja (2014). J. Magn. Magn. Mater. 354, 363.

    Article  CAS  Google Scholar 

  32. F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, and J. Etourneau (2002). Langmuir. 18, 8209.

    Article  CAS  Google Scholar 

  33. I. Soibam, S. Phanjoubam, H. B. Sharma, H. N. K. Sarma, and C. Prakash (2009). Physica B. 404, 3839.

    Article  CAS  Google Scholar 

  34. S. Dasgupta, J. Das, J. Eckert, and I. Manna (2006). J. Magn. Magn. Mater. 306, 9.

    Article  CAS  Google Scholar 

  35. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, and A. C. Basaran (2009). J. Magn. Magn. Mater. 321, 157.

    Article  CAS  Google Scholar 

  36. C. Liu, Y. Ni, L. Zhang, F. Guo, and T. Wu (2014). RSC Adv. 4, 47402.

    Article  CAS  Google Scholar 

  37. A. Sutka, R. Parna, J. Kleperis, T. Kaambre, I. Pavlovska, V. Korsaks, K. Malnieks, L. Grinberga, and V. Kisand (2014). Phys. Scr. 89, 044011. 8 pp.

    Article  Google Scholar 

  38. X. Wang, L. Chen, Q. Fan, J. Fan, G. Xu, M. Yan, M. J. Henderson, J. Courtois, and K. Xiong (2015). J. Alloys Compd. 652, 132.

    Article  CAS  Google Scholar 

  39. R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, and S. Ponnusamy (2013). J. Mater. Sci.: Mater. Electron. 24, 4279.

    CAS  Google Scholar 

  40. Niraj Kumar, P. Dineshkumar, R. Rameshbabu, and A. Sen (2015). Mater. Lett. 158, 309.

    Article  CAS  Google Scholar 

  41. Y. P. Sui, X. F. Huang, Z. Y. Ma, W. Li, F. Qiao, K. Chen, and K. J. Chen (2003). J. Phys.: Condens. Matter. 15, 5793.

    CAS  Google Scholar 

  42. V. A. M. Brabers (1969). Phys. Stat. Sol. 33, 563.

    Article  CAS  Google Scholar 

  43. G. F. Goya and H. R. Rechenberg (1999). J. Magn. Magn. Mater. 196–197, 191.

    Article  Google Scholar 

  44. S. Ayyappan, S. P. Raja, C. Venkateswaran, J. Philip, and B. Raj (2010). Appl. Phys. Lett. 96, 143106.

    Article  Google Scholar 

  45. F. S. Li, H. B. Wang, L. Wang, and J. B. Wang (2007). J. Magn. Magn. Mater. 309, 295.

    Article  CAS  Google Scholar 

  46. Q. Li, R. C. Xie, Y. W. Li, E. A. Mintz, and J. K. Shang (2007). Environ. Sci. Technol. 41, 5050.

    Article  CAS  Google Scholar 

  47. X. Y. Li, Y. Hou, Q. D. Zhao, W. Teng, X. J. Hu, and G. H. Chen (2011). Chemosphere. 82, 581.

    Article  CAS  Google Scholar 

  48. C. H. B. Ng and W. Y. Fan (2006). J. Phys. Chem. B. 110, 20801.

    Article  CAS  Google Scholar 

  49. B. Liu and H. C. Zeng (2004). J. Phys. Chem. B. 108, 5867.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank SRM University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Neppolian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rameshbabu, R., Neppolian, B. Surfactant Assisted Hydrothermal Synthesis of Superparamagnetic ZnFe2O4 Nanoparticles as an Efficient Visible-Light Photocatalyst for the Degradation of Organic Pollutant. J Clust Sci 27, 1977–1987 (2016). https://doi.org/10.1007/s10876-016-1057-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1057-0

Keywords

Navigation