Skip to main content

Advertisement

Log in

Preparation of surfactant-modified ZnTiO3–TiO2 nanostructures and their photocatalytic properties under sunlight irradiation

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of ZnTiO3–TiO2 mixed oxide nanoparticles were successfully synthesized using a simple sol–gel technique and modified with hexadecyl trimethyl ammoniumbromide, sodium dodecyl sulfate, N-cetyl-NNN-trimethyl ammonium bromide as surfactant. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FT-IR), diffuse reflectance spectra (DRS) and scanning electron microscopy techniques (SEM). The photocatalytic activity of samples was investigated by degradation of 4-chlorophenol in water under sunlight and ultraviolet irradiation. The sodium dodecyl sulfate-assisted sample was found to exhibit much higher photocatalytic activity than the other surfactants. The highest photocatalytic efficiency (100 %) was obtained with ZnTi-sodium dodecyl sulfate sample in 60 min. Hexagonal form of ZnTiO3 is found to be more effective for photodegradation. Meanwhile, the processing parameters such as the light source and the amount of surfactant play an important role in tuning the photocatalytic activity. The enhancement of photocatalytic activity for ZnTi-sodium dodecyl sulfate may be attributed to its small particle size, the presence of more surface OH groups, lower band gap energy than no surfactant included sample and the presence of more hexagonal ZnTiO3 phase in the morphology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hermann JM, Guillard C, Pichat P (1993) Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today 17:7–20

    Article  Google Scholar 

  2. Legrini O, Oliveros E, Braun A (1993) Photochemical processes for water treatment. Chem Rev 93:671–678

    Article  Google Scholar 

  3. Schiavelo M (1987) Photocatalysts and environment: trends and applications. NATO ASI Series C. Kluwer Academic Publishers, London

    Google Scholar 

  4. Watts MJ, Cooper AT (2008) Photocatalysis of 4-chlorophenol mediated by TiO2 fixed to concrete surfaces. Solar Energy 82:206–211

    Article  Google Scholar 

  5. Keith LH (1980) EPA's priority pollutants: where they come from-where they're going. AlChE Symp Ser 77:209

    Google Scholar 

  6. Stafford U, Gray KA, Kamat P (1997) Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength. J Catal 167:25–32

    Article  Google Scholar 

  7. Stafford U, Gray KA, Kamat PV (1994) Radiolytic and TiO2-assisted photocatalytic degradation of 4-chlorophenol a comparative study. J Phys Chem 98:6343–6351

    Article  Google Scholar 

  8. Mills A, Wang JJ (1998) Photomineralisation of 4-chlorophenol sensitised by TiO2 thin films. Photochem Photobiol A 118:53–63

    Article  Google Scholar 

  9. Li X, Cubbage JW, Tetzlaff TA, Jenks WS (1999) Photocatalytic degradation of 4-chlorophenol.1. the hydroquinone pathway. J Org Chem 64:8509–8524

    Article  Google Scholar 

  10. Li X, Cubbage JW, Jenks WS (1999) Photocatalytic degradation of 4-chlorophenol.2. the 4-chlorocatechol pathway. J Org Chem 64:8525–8536

    Article  Google Scholar 

  11. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects. Int J Hydrog Energy 27:991–1022

    Article  Google Scholar 

  12. Kong JZ, Li AD, Zhai HF, Li H, Yan QY, Ma J, Wu D (2009) Preparation characterization and photocatalytic properties of ZnTiO3 powders. J Hazard Mater 171:918–923

    Article  Google Scholar 

  13. Wu JJ, Tseng CH (2006) Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl Catal B 66:51–57

    Article  Google Scholar 

  14. Wang YW, Zhang LZ, Deng KJ, Chen XY, Zou ZG (2007) Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures. J Phys Chem C 111:2709–2714

    Article  Google Scholar 

  15. Tang H, Berger H, Schmid PE, Levy F (1994) Optical properties of anatase (TiO2). Solid State Commun 92:267–271

    Article  Google Scholar 

  16. Kavan L, Gratzel M, Gilbert S, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    Article  Google Scholar 

  17. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  Google Scholar 

  18. Liao SC, Lin HF, Hung SW, Hu CT (2006) DC thermal plasma synthesis and properties of zinc oxide nanorods. J Vac Sci Technol B 24:1332–1335

    Article  Google Scholar 

  19. Kim HAT, Byun JD, Kim Y (1998) Microstructure and microwave dielectric properties of modified zinc titanates (I). Mater Res Bull 33:963–973

    Article  Google Scholar 

  20. Su B, Zhu P, Xu J, Zhao L (2011) Photocatalytic property of ZnTiO3–TiO2 nano-composite materials. Chin J Appl Chem 1:33–38

    Google Scholar 

  21. Wang YW, Yuan PH, Fan CM, Wang Y, Ding GY, Wang YF (2012) Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water. Ceram Int 38:4173–4180

    Article  Google Scholar 

  22. Pozan GS, Kambur A (2014) Significant enhancement of photocatalytic activity over bifunctional ZnO–TiO2 catalysts for 4-chlorophenol degradation. Chemosphere 105:152–159

    Article  Google Scholar 

  23. Konga JZ, Li AD, Zhai HF, Li H, Yan QY, Mab J, Wu D (2009) Preparation characterization and photocatalytic properties of ZnTiO3 powders. J Hazard Mater 171:918–923

    Article  Google Scholar 

  24. Zhao LL, Liu FQ, Wang XW, Zhang ZY, Yan YF (2005) Preparation and characterizations of ZnTiO3 powders by sol–gel process. J Sol–Gel Sci Technol 33:103–106

    Article  Google Scholar 

  25. Mohammadi MR, Fray DJ (2010) Low temperature nanostructured zinc titanate by an aqueous particulate sol–gel route: optimisation of heat treatment condition based on Zn:Ti molar ratio. J Eur Ceram Soc 30:947–961

    Article  Google Scholar 

  26. Mao H, Li B, Li X, Yue L, Liu Z, Ma W (2010) Novel one-step synthesis route to ordered mesoporous silica-pillared clay using cationic−anionic mixed-gallery templates. Ind Eng Chem Res 49:583–591

    Article  Google Scholar 

  27. Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD (2007) A versatile bottom–up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed 46:6650–6653

    Article  Google Scholar 

  28. Chai YL, Chang YS, Chen GJ, Hsiao YJ (2008) The effects of heat-treatment on the structure and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater Res Bull 43:1066–1073

    Article  Google Scholar 

  29. Hou L, Hou YD, Zhu MK, Tang J, Liu JB, Wang H, Yan H (2005) Formation and transformation of evolution ZnTiO3 prepared by sol–gel process. Mater Lett 59:197–200

    Article  Google Scholar 

  30. Wu L, Yu JC, Zhang L, Wang X, Ho W (2004) Preparation of a highly active nanocrystalline TiO2 photocatalyst from titanium oxo cluster precursor. J Solid State Chem 177:2584–2590

    Article  Google Scholar 

  31. Yu JG, Wang WG, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment. J Phy Chem C 113:6743–6750

    Article  Google Scholar 

  32. Muller J, Joubert JC (1975) Synthese sous haute pression d'oxygene d'une forme dense ordonne´e de FeVO4 et mise en evidence d'une varie´te´allotropique de structure CrVO4. J Solid State Chem 14:8–13

    Article  Google Scholar 

  33. Fabbri D, Crime A, Davezza M, Medana C, Baiocchi C, Bianco-Prevot A, Pramauro E (2009) Surfactant-assisted removal of swep residues from soil and photocatalytic treatment of the washing wastes. Appl Catal B 92:318–325

    Article  Google Scholar 

  34. Wu JC, Chung CS, Ay CL, Wang I (1984) Nonoxidative dehydrogenation of ethylbenzene over TiO /ZrO catalysts: II the effect of pretreatment on surface properties and catalytic activities. J Catal 87:98–107

    Article  Google Scholar 

  35. Zhong JB, Li JZ, Feng FM, Huang ST, Zeng J (2013) CTAB-assisted fabrication of TiO2 with improved photocatalytic performance. J Mater Lett 100:195–197

    Article  Google Scholar 

  36. Tryba B, Morawski AW, Inagaki M, Toyoda M (2006) The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2 Fe–TiO2 and Fe–C–TiO2 photocatalysts. Appl Catal B 63:215–221

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Research Fund of the Istanbul University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulin Selda Pozan Soylu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, B., Soylu, G.S.P. Preparation of surfactant-modified ZnTiO3–TiO2 nanostructures and their photocatalytic properties under sunlight irradiation. J Sol-Gel Sci Technol 81, 226–235 (2017). https://doi.org/10.1007/s10971-016-4179-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4179-9

Keywords

Navigation