Skip to main content
Log in

Excited-State Intramolecular Proton Transfer Reaction of 3-Hydroxyflavone

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The excited-state intramolecular proton transfer (ESIPT) reaction of 3-hydroxyflavone (3-HF) in methylcyclohexane solvent has been investigated by using the DFT and TD-DFT methods. The geometric structure, IR vibrational spectra, frontier molecular orbitals, natural bond orbital, and potential energy curves in the ground state (S0) and first excited state (S1) are analyzed to reveal the mechanism of proton transfer. The results demonstrate that there are enol- and keto- two isomers for 3-HF in the S1, which is accorded with the experimental double fluorescence bands. The 3-HF-enol can be isomerized into 3-HF-keto via ESIPT. The mechanism of proton transfer is attributed to the strengthening of hydrogen bond originated from intramolecular charge transfer. The potential energy curves in the S0 and S1 states also illuminate the tautomerism mechanism between 3-HF-enol and 3-HF-keto, and the ground-state 3-HF-keto might not exist long and is isomerized mostly into the 3-HF-enol due to its high energy or instability. This is the reason that only one absorption peak is observed for 3-HF in experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies (2009). Nature 462, 200–205.

    Article  CAS  Google Scholar 

  2. M. Buffa, S. Cartruan, A. Quaranta, G. Maggioni, and G. Della Mea (2012). Opt. Mater. 34, 1219–1224.

    Article  CAS  Google Scholar 

  3. H. Li, Y. Shi, H. Yin, Y. Wang, L. Cong, M. X. Jin, and D. J. Ding (2015). Spectrochim. Acta Part A 141, 211–215.

    Article  CAS  Google Scholar 

  4. N. Kungwan, F. Plasser, A. J. A. Aquino, M. Barbatti, P. Wolschann, and H. Lischka (2012). Phys. Chem. Chem. Phys. 14, 9016–9025.

    Article  CAS  Google Scholar 

  5. S. C. Lan and Y. H. Liu (2015). Spectrochim. Acta Part A 139, 49–53.

    Article  CAS  Google Scholar 

  6. P. Kukura, D. W. Mccamant, and R. A. Mathies (2007). Annu. Rev. Phys. Chem. 58, 461–488.

    Article  CAS  Google Scholar 

  7. S. R. Meech (2009). Chem. Soc. Rev. 38, 2922–2934.

    Article  CAS  Google Scholar 

  8. T. J. Martinez (2006). Acc. Chem. Res. 39, 119–126.

    Article  CAS  Google Scholar 

  9. S. Hayashi, E. Taikhorshid, and K. Schulten (2009). Biophys. J. 96, 403–416.

    Article  CAS  Google Scholar 

  10. T. Tahara, S. Takeuchi, and K. Ishii (2006). J. Chin. Chem. Soc. 53, 181–189.

    Article  CAS  Google Scholar 

  11. T. Kobayashi, T. Saito, and H. Ohtani (2001). Nature 414, 531–534.

    Article  CAS  Google Scholar 

  12. S. Chai, G. J. Zhao, P. Song, S. Q. Yang, J. Y. Liu, and K. L. Han (2009). Phys. Chem. Chem. Phys. 11, 4385–4390.

    Article  CAS  Google Scholar 

  13. G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010–2017.

    Article  CAS  Google Scholar 

  14. G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306–024312.

    Article  Google Scholar 

  15. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469–2474.

    Article  CAS  Google Scholar 

  16. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940–8945.

    Article  CAS  Google Scholar 

  17. G. J. Zhao and K. L. Han (2008). ChemPhysChem 9, 1842–1846.

    Article  CAS  Google Scholar 

  18. Y. M. Dai, J. F. Zhao, Y. L. Cui, Q. Y. Wang, P. Song, F. C. Ma, and Y. Y. Zhao (2015). Spectrochim. Acta Part A 144, 76–80.

    Article  CAS  Google Scholar 

  19. Y. L. Frolov, Y. M. Sapozhnikov, S. S. Barer, N. N. Pogodaeva, and N. A. Tyukavkina (1974). Science 23, 2279–2281.

    Google Scholar 

  20. G. J. Woolfe and P. J. Thistlethwaite (1981). J. Am. Chem. Soc. 103, 6916–6923.

    Article  CAS  Google Scholar 

  21. M. Itoh, K. Tokumura, Y. Tanimoto, Y. Okada, H. Takeuchi, K. Obi, and I. Tanaka (1982). J. Am. Chem. Soc. 104, 4146–4150.

    Article  CAS  Google Scholar 

  22. A. J. G. Strandjord, S. H. Courtney, D. M. Friedrich, and P. F. Barbara (1983). J. Phys. Chem. 87, 1125–1133.

    Article  CAS  Google Scholar 

  23. D. Mcmorrow and M. Kasha (1983). J. Am. Chem. Soc. 105, 5133–5134.

    Article  CAS  Google Scholar 

  24. A. J. G. Strandjord, D. E. Smith, and P. F. Barbara (1985). J. Phys. Chem. 89, 2362–2366.

    Article  CAS  Google Scholar 

  25. S. M. Ormson, R. G. Brown, P. Matousek, and M. Towrie (2001). J. Phys. Chem. A 105, 3709–3718.

    Article  Google Scholar 

  26. D. Yang, Y. Yang, and Y. Liu (2013). Commun. Comput. Chem. 1, 205–215.

    Google Scholar 

  27. M. T. Sun and H. X. Xu (2012). Small 8, 2777–2786.

    Article  CAS  Google Scholar 

  28. J. F. Zhao, P. Song, Y. L. Cui, X. M. Liu, S. W. Sun, S. Y. Hou, and F. C. Ma (2014). Spectrochim. Acta Part A 131, 282–287.

    Article  CAS  Google Scholar 

  29. B. K. Paul and N. Guchhait (2011). J. Lumin. 131, 1918–1926.

    Article  CAS  Google Scholar 

  30. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38–46.

    Article  CAS  Google Scholar 

  31. X. H. Zhao and M. D. Chen (2010). J. Phys. Chem. A 114, 7786–7790.

    Article  CAS  Google Scholar 

  32. K. C. Tang, C. L. Chen, H. H. Chuang, J. L. Chen, Y. J. Chen, Y. C. Lin, J. Y. Shen, W. P. Hu, and P. T. Chou (2011). J. Phys. Chem. Lett. 2, 3063–3068.

    Article  CAS  Google Scholar 

  33. Y. Nagai, K. Saita, K. Sakata, S. Nanbu, M. Sekine, M. Nakata, and H. Sekiya (2010). J. Phys. Chem. A 114, 5041–5048.

    Article  CAS  Google Scholar 

  34. J. F. Zhao, P. Song, and F. C. Ma (2014). Commun. Comput. Chem. 2, 117–130.

    Google Scholar 

  35. K. Ando, S. Hayashi, and S. Kato (2011). Phys. Chem. Chem. Phys. 13, 11118–11127.

    Article  CAS  Google Scholar 

  36. M. Zhang, W. Mi, and C. Hao (2013). Commun. Comput. Chem. 1, 269–278.

    Google Scholar 

  37. B. K. Paul, A. Ganguly, and N. Guchhait (2014). Spectrochim. Acta Part A. 131, 72–81.

    Article  CAS  Google Scholar 

  38. Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 1–7.

    Article  CAS  Google Scholar 

  39. M. T. Sun, Y. H. Chen, P. Song, and F. C. Ma (2005). Chem. Phys. Lett. 413, 110–117.

    Article  CAS  Google Scholar 

  40. Y. Liu and S. C. Lan (2013). Commun. Comput. Chem. 1, 235–243.

    Google Scholar 

  41. P. Song, Y. Z. Li, F. C. Ma, T. Pullerits, and M. T. Sun (2013). J. Phys. Chem. C 117, 15879–15889.

    Article  CAS  Google Scholar 

  42. F. Furche and R. Ahlrichs (2002). J. Chem. Phys. 117, 7433–7447.

    Article  CAS  Google Scholar 

  43. J. L. Whitten (1973). J. Chem. Phys. 58, 4496–4501.

    Article  CAS  Google Scholar 

  44. A. Schafer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829–5835.

    Article  Google Scholar 

  45. G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404–413.

    Article  CAS  Google Scholar 

  46. R. Wu, P. Nachtigall, and B. Brutschy (2004). Phys. Chem. Chem. Phys. 6, 515–521.

    Article  CAS  Google Scholar 

  47. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Scalmani, G. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, 2009).

  48. A. J. G. Strandjord and P. F. Barbara (1985). J. Phys. Chem. 89, 2355–2366.

    Article  CAS  Google Scholar 

  49. D. Mcmorrow and M. Kasha (1984). J. Phys. Chem. 88, 2235–2243.

    Article  CAS  Google Scholar 

  50. P. K. Mandal and A. Samanta (2003). J. Phys. Chem. A 107, 6334–6339.

    Article  CAS  Google Scholar 

  51. J. F. Zhao, J. S. Chen, Y. L. Cui, J. Wang, L. X. Xia, Y. M. Dai, P. Song, and F. C. Ma (2015). Phys. Chem. Chem. Phys. 17, 1142–1150.

    Article  CAS  Google Scholar 

  52. L. Serrano-Andres and M. Merchan (2009). J. Photochem. Photobiol. C 10, 21–32.

    Article  CAS  Google Scholar 

  53. Y. Saga, Y. Shibata, and H. Tamiaki (2010). J. Photochem. Photobiol. C 11, 15–24.

    Article  CAS  Google Scholar 

  54. J. F. Zhao, H. B. Yao, J. Y. Liu, and M. R. Hoffmann (2015). J. Phys. Chem. A 119, 681–688.

    Article  CAS  Google Scholar 

  55. A. L. Sobolewski and W. Domcke (1999). Phys. Chem. Chem. Phys. 1, 3065–3072.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (Grant No. 21203012), Liaoning Excellent Talents Programand (LJQ2013118), and the Foundation of State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology (KFJJ14-08M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajing Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Peng, Y. Excited-State Intramolecular Proton Transfer Reaction of 3-Hydroxyflavone. J Clust Sci 26, 1983–1992 (2015). https://doi.org/10.1007/s10876-015-0893-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0893-7

Keywords

Navigation