Skip to main content
Log in

Theoretical Investigation of the ESIPT Mechanism for the 1-Hydroxy-9H-fluoren-9-one and 1-Hydroxy-11H-benzo[b]fluoren-11-one Chromophores

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The excited state intramolecular proton transfer (ESIPT) dynamics of the 1-hydroxy-9H-fluoren-9-one (HHF) and 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) chromophores were investigated theoretically. The calculated bond lengths and angles, hydrogen bond energies and infrared vibrational spectra involved in the hydrogen bonding of O–H···O indicated that the intramolecular hydrogen bond was strengthened in the S1 state. Our calculated results accurately reproduced the experimental absorbance and fluorescence emission spectra, demonstrating that the adopted time-dependent density functional theory (TDDFT) method is reasonable and effective. In addition, qualitative and quantitative intramolecular charge transfer based on the frontier molecular orbitals provided the possibility of the ESIPT reaction. The potential energy curves of the ground and first excited states have been constructed to illustrate the ESIPT mechanism. Based on our calculations, we explain the equilibrium ESIPT processes observed in previous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. A. Jeffery and W. Saenger Hydrogen Bonding in Biology and Chemistry (Springer, Berlin, 1991).

    Book  Google Scholar 

  2. G. R. Desiraju and T. Steiner The Weak Hydrogen Bond: In Structural Chemistry and Biology (Oxford University Press, Oxford, 1999).

    Google Scholar 

  3. S. Scheiner Hydrogen Bonding: A Theoretical Perspective (Oxford University Press, New York, 1997).

    Google Scholar 

  4. I. Alkorta, I. Rozas, and J. Elguero (1998). Chem. Soc. Rev. 27, 163.

    Article  CAS  Google Scholar 

  5. T. Steiner (2002). Angew. Chem. Int. Ed. Engl. 41, 49.

    Google Scholar 

  6. A. van der Varart and K. M. Merz (2002). J. Chem. Phys. 116, 7380.

    Article  Google Scholar 

  7. J. Zhao, S. Ji, Y. Chen, H. Guo, and P. Yang (2012). Phys. Chem. Chem. Phys. 14, 8803.

    Article  CAS  Google Scholar 

  8. Y. Liu, Y. Yang, K. Jiang, D. Shi, and J. Sun (2012). Chem. Phys. Lett. 528, 53.

    Article  CAS  Google Scholar 

  9. J. Zhao, J. Chen, Y. Cui, J. Wang, L. Xia, Y. Dai, P. Song, and F. Ma (2015). Phys. Chem. Chem. Phys. 17, 1142.

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Ding, R. Liu, D. Shi, and J. Sun (2009). J. Comput. Chem. 30, 2723.

    Article  CAS  Google Scholar 

  11. P. W. Zhou, J. Y. Liu, S. Q. Yang, J. S. Chen, K. L. Han, and G. Z. He (2012). Phys. Chem. Chem. Phys. 14, 15191.

    Article  CAS  Google Scholar 

  12. Y. Zhang, Y. Shi, and Y. Li (2016). J. Mater. Sci. 27, 7132.

    CAS  Google Scholar 

  13. Y. Yang, Y. Liu, D. Yang, H. Li, K. Jiang, and J. Sun (2015). Phys. Chem. Chem. Phys. 17, 32132.

    Article  CAS  Google Scholar 

  14. J. Zhao, H. Yao, J. Liu, and M. R. Hoffmann (2015). J. Phys. Chem. A 119, 681.

    Article  CAS  Google Scholar 

  15. P. Song and F. Ma (2013). Int. Rev. Phys. Chem. 32, 589.

    Article  CAS  Google Scholar 

  16. Y. H. Liu, M. S. Mehata, and J. Y. Liu (2011). J. Phys. Chem. A 115, 19.

    Article  CAS  Google Scholar 

  17. A. Weller (1956). Z. Elektrochem. 60, 1144.

    CAS  Google Scholar 

  18. P. T. Chou, S. L. Studer, and M. L. Martinez (1991). Appl. Spectrosc. 45, 513.

    Article  CAS  Google Scholar 

  19. P. T. Chou, M. L. Martinez, and S. L. Studer (1991). Appl. Spectrosc. 45, 918.

    Article  CAS  Google Scholar 

  20. P. T. Chou, M. L. Martinez, W. C. Cooper, and C. P. Chang (1994). Appl. Spectrosc. 48, 604.

    Article  CAS  Google Scholar 

  21. P. Song, Y. Li, F. Ma, T. Pullerits, and M. Sun (2013). J. Phys. Chem. C 117, 15879.

    Article  CAS  Google Scholar 

  22. H. Yin, Y. Shi, and Y. Wang (2014). Spectrochim. Acta Part A 129, 280.

    Article  CAS  Google Scholar 

  23. Y. Wang, H. Yin, Y. Shi, M. Jin, and D. Ding (2014). New J. Chem. 38, 4458.

    Article  CAS  Google Scholar 

  24. J. Zhao, J. Chen, J. Liu, and M. R. Hoffmann (2015). Phys. Chem. Chem. Phys. 17, 11990.

    Article  CAS  Google Scholar 

  25. H. Yin, H. Li, G. Xia, C. Ruan, Y. Shi, H. Wang, M. Jin, and D. Ding (2016). Sci. Rep-UK. 6, 19774.

    Article  CAS  Google Scholar 

  26. K. C. Tang, M. J. Chang, T. Y. Lin, H. A. Pan, T. C. Fang, K. Y. Chen, W. Y. Hung, Y. H. Hsu, and P. T. Chou (2011). J. Am. Chem. Soc. 133, 17738.

    Article  CAS  Google Scholar 

  27. S. Kim, J. Seo, H. K. Juang, J. J. Kim, and S. Y. Park (2005). Adv. Mater. 17, 2077.

    Article  CAS  Google Scholar 

  28. C. Miao and Y. Shi (2011). J. Comput. Chem. 32, 3058.

    Article  CAS  Google Scholar 

  29. Y. J. Yang, M. Lowry, C. M. Schonalter, S. O. Fakayode, J. O. Escobedo, X. Y. Xu, H. T. Zhang, T. J. Jensen, F. R. Franczck, I. M. Wamer, and R. M. Strongin (2006). J. Am. Chem. Soc. 128, 14801.

    Google Scholar 

  30. K. Sakai, S. Tsuchive, T. Kikuchi, and T. Akutaqawa (2016). J. Mater. Chem. C 4, 2011.

    Article  CAS  Google Scholar 

  31. V. S. Padalkar and S. Seki (2016). Chem. Soc. Rev. 45, 169.

    Article  CAS  Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Scalmani, G. Cheeseman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision A.02 (Gaussian Inc, Wallingford, 2009).

    Google Scholar 

  33. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  35. D. Feller (1996). J. Comp. Chem. 17, 1571.

    Article  CAS  Google Scholar 

  36. B. Mennucci, E. Cances, and J. Tomasi (1997). J. Phys. Chem. B 101, 10506.

    Article  CAS  Google Scholar 

  37. R. Cammi and J. Tomasi (1995). J. Comput. Chem. 16, 1449.

    Article  CAS  Google Scholar 

  38. S. Miertus, E. Scrocco, and J. Tomasi (1981). Chem. Phys. 55, 117.

    Article  CAS  Google Scholar 

  39. R. N. Musin and Y. H. Mariam (2006). J. Phys. Org. Chem. 19, 425.

    Article  CAS  Google Scholar 

  40. P. Schuster, G. Zundel and C. Sandorfy (eds.) The Hydrogen Bond, vol. 1 (North-Holland Publishing Company, Amsterdam, 1976).

    Google Scholar 

  41. B. F. W. Bader Atoms in Molecules, A Quantum Theory (Clarendon Press, Oxford, 2000).

    Google Scholar 

  42. P. L. A. Popelier (1998). J. Phys. Chem. A 102, 1873.

    Article  CAS  Google Scholar 

  43. L. M. Tolbert and K. M. Solntsev (2002). Acc. Chem. Rev. 35, 19.

    Article  CAS  Google Scholar 

  44. I. Y. Martynov, A. B. Demyashkevich, B. M. Uzhinov, and M. G. Kuz’min (1977). Russ. Chem. Rev. 46, 1.

    Article  Google Scholar 

  45. N. Agmon (2005). J. Phys. Chem. A 109, 13.

    Article  CAS  Google Scholar 

  46. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

  47. K. Furukawa, K. Hino, N. Yamamoto, K. Awasthi, T. Nakabayashi, N. Ohta, and H. Sekiya (2015). J. Phys. Chem. A 119, 9599.

    Article  CAS  Google Scholar 

  48. R. Welsch, E. Driscoll, J. M. Dawlaty, and T. F. Miller III (2016). J. Phys. Chem. Lett. 7, 3616.

    Article  CAS  Google Scholar 

  49. J. Zhao and Y. Yang (2016). J. Mol. Liq. 220, 735.

    Article  CAS  Google Scholar 

  50. J. Zhao and P. Li (2015). RSC Adv. 5, 73619.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11304135 and 21271095), the Doctor Subject Foundation of the Ministry of Education of China (20132101110001), the Shenyang Natural Science Foundation of China (F15-199-1-04) and the Liaoning Provincial Department of Education Project (Grant No. L2015200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Yi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhou, Q., Zhang, M. et al. Theoretical Investigation of the ESIPT Mechanism for the 1-Hydroxy-9H-fluoren-9-one and 1-Hydroxy-11H-benzo[b]fluoren-11-one Chromophores. J Clust Sci 28, 1191–1200 (2017). https://doi.org/10.1007/s10876-016-1122-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1122-8

Keywords

Navigation