Skip to main content
Log in

Effect of the Passivating Ligands on the Geometric and Electronic Properties of Au–Pd Nanoalloys

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Understanding the interaction of the passivating ligands with the clusters is definitely important for the synthesization of high-quality bimetallic clusters (or “nanoalloys”) by chemical reduction method. In this work, the influence of the ligands (PH3 and PMe3) on the geometric and electronic properties of 55-atom Au–Pd nanoalloys is investigated by density functional theory calculations. It is found that the adsorption of PH3 on the Au-rich clusters can modify the morphology of the cluster and the adsoprtion strength of PH3 can be enhanced by the increase of the concentration of Pd in Au–Pd nanoalloys. Our results also suggest that increasing the number of alkyl substituents from PH3 to PMe3 can greatly enhance the adsoprtion strength of the ligand, but is of little effect on the stability of the cluster. In addition, the increase of the coverage of ligands on Au–Pd nanoalloys can slightly decrease the adsorption strength per ligand, but can significantly increase the stability of the cluster. Our results highlight a fundamental research on the effect of the ligands on the physicochemical properties of nanoalloys, which can be used to guide the synthesization of high-quality nanoalloys in the presence of passivating ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Taladriz-Blanco, V. Pastoriza-Santos, J. Pérez-Juste, and P. Hervés (2013). Langmuir 29, 8061.

    Article  CAS  Google Scholar 

  2. J. F. Parker, K. A. Kacprza, O. Lopez-Acevedo, H. Häkkinen, and W. Murray (2010). J. Phys. Chem. C 114, 8276.

    Article  CAS  Google Scholar 

  3. M. Dubecký and H. Su (2012). J. Phys. Chem. C 116, 17714.

    Article  Google Scholar 

  4. F. Hidalgo and C. Noguez (2012). ACS Nano 7, 513.

    Article  Google Scholar 

  5. I. V. Yudanov, A. Genest, S. Schauermann, H.-J. Freund, and N. Rösch (2012). Nano Lett. 12, 2134.

    Article  CAS  Google Scholar 

  6. W. D. Michalak, J. M. Krier, K. Komvopoulos, and G. A. Somorjai (2012). J. Phys. Chem. C 117, 1809.

    Article  Google Scholar 

  7. Y. Song, J. Ding, and Y. Wang (2012). J. Phys. Chem. C 116, 11343.

    Article  CAS  Google Scholar 

  8. G. Barcaro, M. Causa, and A. Fortunelli (2007). Theor. Chem. Acc. 118, 807.

    Article  CAS  Google Scholar 

  9. X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, and T. Zhang (2013). Acc. Chem. Res. 46, 1740.

    Article  CAS  Google Scholar 

  10. D. J. Cheng and W. C. Wang (2012). Nanoscale 4, 2408.

    Article  CAS  Google Scholar 

  11. M. M. Hu, D. P. Linder, M. B. Nardelli, and A. Striolo (2013). J. Phys. Chem. C 117, 15050.

    Article  CAS  Google Scholar 

  12. T. L. Tan, L. L. Wang, D. D. Johnson, and K. W. Bai (2012). Nano Lett. 12, 4875.

    Article  CAS  Google Scholar 

  13. R. Ismail, R. Ferrando, and R. L. Johnston (2013). J. Phys. Chem. C 117, 293.

    Article  CAS  Google Scholar 

  14. D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, and G. J. Hutchings (2006). Science 311, 362.

    Article  CAS  Google Scholar 

  15. Y. F. Han, D. Kumar, and D. W. Goodman (2005). J. Catal. 230, 353.

    Article  CAS  Google Scholar 

  16. C. J. Baddeley, R. M. Ormerod, A. W. Stephenson, and R. M. Lambert (1995). J. Phys. Chem. 99, 5146.

    Article  CAS  Google Scholar 

  17. C. J. Baddeley, M. Tikhov, C. Hardacre, J. R. Lomas, and R. M. Lambert (1996). J. Phys. Chem. 100, 2189.

    Article  CAS  Google Scholar 

  18. K. Deplanche, I. P. Mikheenko, J. A. Bennett, M. Merroun, H. Mounzer, J. Wood, and L. E. Macaskie (2011). Top Catal. 54, 1110.

    Article  CAS  Google Scholar 

  19. J. K. Edwards, B. Solsona, N. N. Edwin, A. F. Carley, A. A. Herzing, C. J. Kiely, and G. J. Hutchings (2009). Science 323, 1037.

    Article  CAS  Google Scholar 

  20. J. K. Edwards and G. J. Hutchings (2008). Angew. Chem. Int. Ed. 47, 9192.

    Article  CAS  Google Scholar 

  21. T. Udayabhaskararao and T. Pradeep (2013). J. Phys. Chem. Lett. 4, 1553.

    Article  CAS  Google Scholar 

  22. M. R. Knecht, M. G. Weir, A. I. Frenkel, and R. M. Crooks (2008). Chem. Mater. 20, 1019.

    Article  CAS  Google Scholar 

  23. B. M. Munoz-Flores, B. I. Kharisov, V. M. Jimenez-Perez, P. E. Martinez, and S. T. Lopez (2011). Ind. Eng. Chem. Res. 50, 7705.

    Article  CAS  Google Scholar 

  24. N. J. S. Costa and L. M. Rossi (2012). Nanoscale 4, 5826.

    Article  CAS  Google Scholar 

  25. D. Astruc, F. Lu, and J. R. Aranzaes (2005). Angew. Chem. Int. Ed. 44, 7852.

    Article  CAS  Google Scholar 

  26. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison (2007). Chem. Rev. 107, 2228.

    Article  CAS  Google Scholar 

  27. A. M. Doyle, S. K. Shaikhutdinov, S. D. Jackson, and H.-J. Freund (2003). Angew. Chem. Int. Ed. 42, 5240.

    Article  CAS  Google Scholar 

  28. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. Jin (2008). J. Am. Chem. Soc. 130, 5883.

    Article  CAS  Google Scholar 

  29. H. Yoo, S. K. Moon, T. Hwang, Y. S. Kim, J. H. Kim, S. W. Choi, and J. H. Kim (2013). Langmuir 29, 5962.

    Article  CAS  Google Scholar 

  30. D. Manzoor, S. Pal, and S. Krishnamurty (2013). J. Phys. Chem. C 117, 20982.

    Article  CAS  Google Scholar 

  31. J. Kilmartin, R. Sarip, R. Grau-Crespo, D. Di Tommaso, G. Hogarth, C. Prestipino, and G. Sankar (2012). ACS Catal. 2, 957.

    Article  CAS  Google Scholar 

  32. G. Li and R. Jin (2013). Acc. Chem. Res. 46, 1749.

    Article  CAS  Google Scholar 

  33. M. Sankar, Q. He, M. Morad, J. Pritchard, S. J. Freakley, J. K. Edwards, S. H. Taylor, D. J. Morgan, A. F. Carley, D. W. Knight, C. J. Kiely, and G. J. Hutchings (2012). ACS Nano 6, 6600.

    Article  CAS  Google Scholar 

  34. I. Geukens and D. E. De Vos (2013). Langmuir 29, 3170.

    Article  CAS  Google Scholar 

  35. J. P. Wilcoxon and B. L. Abrams (2006). Chem. Soc. Rev. 35, 1162.

    Article  CAS  Google Scholar 

  36. C. Kumara and A. Dass (2011). Nanoscale 3, 3064.

    Article  CAS  Google Scholar 

  37. K. Naoe, C. Petit, and M. P. Pileni (2008). Langmuir 24, 2792.

    Article  CAS  Google Scholar 

  38. J. L. Hueso, V. Sebastian, A. Mayoral, L. Uson, M. Arruebo, and J. Santamaria (2013). RSC Adv. 3, 10427.

    Article  CAS  Google Scholar 

  39. G. Shafai, S. Y. Hong, M. Bertino, and T. S. Rahman (2009). J. Phys. Chem. C 113, 12072.

    Article  CAS  Google Scholar 

  40. S. Knoppe, S. Malola, L. Lehtovaara, T. Burgi, and H. Hakkinen (2013). J. Phys. Chem. A 117, 10526.

    Article  CAS  Google Scholar 

  41. O. Lopez-Acevedo, K. A. Kacprzak, J. Akola, and H. Hakkinen (2010). Nat. Chem. 2, 329.

    Article  CAS  Google Scholar 

  42. G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L. C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P. S. Ari, S. Alexander, U. Paolo and M. W. Renata (2009). J. Phys.: Condens. Matter. 21, 395502.

  43. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  44. M. Methfessel and A. T. Paxton (1989). Phys. Rev. B 40, 3616.

    Article  CAS  Google Scholar 

  45. D. Cheng, S. Huang, and W. Wang (2006). Phys. Rev. B 74, 064117.

    Article  Google Scholar 

  46. F. Baletto, C. Mottet, and R. Ferrando (2003). Phys. Rev. Lett. 90, 135504.

    Article  CAS  Google Scholar 

  47. H. Zhang, T. Watanabe, M. Okumura, M. Haruta, and N. Toshima (2012). Nat. Mater. 11, 49.

    Article  Google Scholar 

  48. G. Barcaro and A. Fortunelli (2007). New J. Phys. 9, 22.

    Article  Google Scholar 

  49. P. S. West, R. L. Johnston, G. Barcaro, and A. Fortunelli (2010). J. Phys. Chem. C 114, 19678.

    Article  CAS  Google Scholar 

  50. E. Apra, F. Baletto, R. Ferrando, and A. Fortunelli (2004). Phys. Rev. Lett. 93, 065502.

    Article  CAS  Google Scholar 

  51. F. Baletto and R. Ferrando (2005). Rev. Mod. Phys. 77, 371.

    Article  CAS  Google Scholar 

  52. F. Chen, B. C. Curley, G. Rossi, and R. L. Johnston (2007). J. Phys. Chem. C 111, 9157.

    Article  CAS  Google Scholar 

  53. C. di Paola and F. Baletto (2011). Phys. Chem. Chem. Phys. 13, 7701.

    Article  Google Scholar 

  54. S. Goel, K. A. Velizhanin, A. Piryatinski, S. Tretiak, and S. A. Ivanov (2010). J. Phys. Chem. Lett. 1, 927.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alessandro Fortunelli for helpful comments and suggestions. This work is supported by the National Natural Science Foundation of China (21106003, 91334203), Beijing Novel Program (Z12111000250000), “Chemical Grid Project” of BUCT and Supercomputing Center of Chinese Academy of Sciences (SCCAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daojian Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Cheng, D. Effect of the Passivating Ligands on the Geometric and Electronic Properties of Au–Pd Nanoalloys. J Clust Sci 26, 799–813 (2015). https://doi.org/10.1007/s10876-014-0755-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0755-8

Keywords

Navigation