Skip to main content
Log in

A comparison between the absorption properties of the regular and F s -defected MgO (100) surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electron density, the electrostatic potential and the electric field of the MgO (100) surface, both regular and containing an oxygen vacancy (F s center), are compared in order to understand the modifications induced in the surface-absorbate interaction by the presence of the defect, with particular attention to the metal-oxide case. The spin-density for a gold atom absorbing on the most characteristic sites of the regular and F s -defected surface is also shown. It is found that in the defected surface the electron pair in the vacancy protrudes appreciably out of the surface, thus shifting the electrostatic potential to negative values (but producing a similar electric field) and being able to chemically interact with neighboring absorbed species. These results rationalize the rotational invariance and double frustration effects previously described for the metal/F s -defected MgO (100) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osgood R (2006). Chem Rev 106: 4379–4401

    Article  CAS  Google Scholar 

  2. Barteau MA (1996). Chem Rev 96: 1413–1430

    Article  CAS  Google Scholar 

  3. Watanabe K, Menzel D, Nilius N and Freund HJ (2006). Chem Rev 106: 4301–4320

    Article  CAS  Google Scholar 

  4. Delmon B (2006). Catal Today 117: 69–74

    Article  CAS  Google Scholar 

  5. Lauritsen JV (2006). Nanotechnology 17: 3436–3441

    Article  CAS  Google Scholar 

  6. Schoiswohl J, Surnev S and Netzer FP (2005). Top Catal 36: 91–105

    Article  CAS  Google Scholar 

  7. Tada M and Iwasawa Y (2006). Chem Commun 28: 2833–2844

    Article  Google Scholar 

  8. Freund HJ (2002). Surf Sci 500: 271–299

    Article  CAS  Google Scholar 

  9. Barth C and Henry CR (2003). Phys Rev Lett 91: 196102

    Article  Google Scholar 

  10. Coluccia S, Baricco M, Marchese L, Martra G and Zecchina A (1993). Spectrochim Acta A 49: 1289–1298

    Article  Google Scholar 

  11. Mellor IM, Burrows A, Coluccia S, Hargreaves JSJ, Joyner RW, Kiely CJ, Martra G, Stockenhuber M and Tang WM (2005). J Catal 234: 14–23

    Article  CAS  Google Scholar 

  12. Sterrer M, Risse T and Freund HJ (2006). App Catal A 307: 58–61

    Article  CAS  Google Scholar 

  13. Sterrer M, Fischbach E, Heyde M, Nilius N, Rust HP, Risse T and Freund HJ (2006). J Phys Chem B 110: 8665–8669

    Article  CAS  Google Scholar 

  14. Barth C and Henry CR (2006). Nanotechnology 17: S155–S161

    Article  CAS  Google Scholar 

  15. Barcaro G and Fortunelli A (2005). J Comp Theor Chem 1: 972–985

    Article  CAS  Google Scholar 

  16. Giordano L, Di Valentin C, Goniakowski J and Pacchioni G (2004). Phys Rev Lett 92: 096105

    Article  Google Scholar 

  17. Sterrer M, Yulikov M, Fischbach E, Heyde M, Rust HP, Pacchioni G, Risse T and Freund HJ (2006). Angew Chem Int Ed 45: 2630–2632

    Article  CAS  Google Scholar 

  18. Pacchioni G and Pescarmona P (1998). Surf Sci 412/413: 657

    Article  CAS  Google Scholar 

  19. Matveev AV, Neyman K, Yudanov I and Rösch N (1999). Surf Sci 426: 123–139

    Article  CAS  Google Scholar 

  20. Bogicevic A and Jennison DR (1999). Surf Sci 437: L741

    Article  CAS  Google Scholar 

  21. Mori-Sanchez P, Recio JM, Silvi B, Sousa C, Martin Pendas A, Luana V and Illas F (2002). Phys Rev B 66: 075103

    Article  Google Scholar 

  22. Yang Z, Wu R, Zhang Q and Goodman DW (2002). Phys Rev B 65: 155407

    Article  Google Scholar 

  23. Del Vitto A, Pacchioni G, Delbecq F and Sautet P (2005). J Phys Chem B 109: 8040

    Article  CAS  Google Scholar 

  24. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K and Heiz U (2005). Science 307: 403

    Article  CAS  Google Scholar 

  25. Walter M and Häkkinen H (2005). Phys Rev B 72: 205440

    Article  Google Scholar 

  26. Neyman KM, Inntam C, Matveev AV, Nasluzov VA and Rosch N (2005). J Am Chem Soc 127: 11652

    Article  CAS  Google Scholar 

  27. Moseler M, Häkkinen H and Landman U (2002). Phys Rev Lett 89: 176103

    Article  CAS  Google Scholar 

  28. Pacchioni G (2003). Chem Phys Chem 4: 1041

    CAS  Google Scholar 

  29. Sousa C and Illas F (2001). J Chem Phys 115: 1435

    Article  CAS  Google Scholar 

  30. Wendt S, Kim YD and Goodman DW (2003). Prog Surf Sci 74: 141

    Article  CAS  Google Scholar 

  31. Sanchez A, Abbet S, Heiz U, Schneider WD, Häkkinen H, Barnett RN and Landman U (1999). J Phys Chem A 103: 9573–9578

    Article  CAS  Google Scholar 

  32. Molina LM and Hammer B (2005). J Chem Phys 123: 161104

    Article  CAS  Google Scholar 

  33. Neyman K M, Inntam C, Moskaleva L V and Rösch N (2006). Chem Eur J 13: 277

    Article  Google Scholar 

  34. Yulikov M, Sterrer M, Heyde M, Rust HP, Risse T, Freund HJ, Pacchioni G and Scagnelli A (2006). Phys Rev Lett 96: 146804

    Article  Google Scholar 

  35. Barcaro G and Fortunelli A (2006). J Phys Chem B 110: 21021–21027

    Article  CAS  Google Scholar 

  36. Saunders VR, Dovesi R, Roetti C, Orlando R, Zicovich-Wilson CM, Harrison NM, Doll K, Civalleri B, Bush IJ, D’Arco P, Llunell M, CRYSTAL 2003 User Manual (2003) Turin University

  37. Becke AD (1993). J Chem Phys 98: 5648–5652

    Article  CAS  Google Scholar 

  38. McCarthy MI and Harrison NM (1994). Phys Rev B 49: 8574–8582

    Article  Google Scholar 

  39. Dovesi R, Roetti C, Freyria-Fava C, Aprà E, Saunders VR and Harrison NM (1992). Philos Trans R Soc London Ser A 341: 203

    Article  CAS  Google Scholar 

  40. Kokalj A (1999). J Mol Graph Model 17: 176

    Article  CAS  Google Scholar 

  41. Sterrer M, Fischbach E, Risse T, Freund HJ (2005) Phys Rev Lett 94:186101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fortunelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcaro, G., Causà, M. & Fortunelli, A. A comparison between the absorption properties of the regular and F s -defected MgO (100) surface. Theor Chem Account 118, 807–812 (2007). https://doi.org/10.1007/s00214-007-0324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0324-4

Keywords

Navigation