Skip to main content
Log in

Theoretical Studies on the Structures and Stabilities of Charged, Titanium-Doped, Small Silicon Clusters, TiSi n /TiSi +n (n = 1–8)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structures and stabilities of charged, titanium-doped, small silicon clusters TiSi +n /TiSi n (n = 1–8) have been systematically investigated using the density functional theory method at the B3LYP/6-311+G* level. For comparison, the geometries of neutral TiSin clusters were also optimized at the same level, although most of them have been reported previously (Guo et al., J Chem Phys 126: 234704, 2007). Our results indicate that all neutral TiSin clusters favor Si-capped TiSin−1 structures, with the lowest energy structure of TiSi2, TiSi3, TiSi4, TiSi5, TiSi6, TiSi7 and TiSi8 being Si-side-on TiSi adduct, Si-face-capped TiSi2 triangle, Si-face-capped TiSi3 trigonal pyramid, Si-face-capped TiSi4 trigonal bipyramid, Si-face-capped TiSi5 square bipyramid, Si-face-capped TiSi6 pentagonal bipyramid, and Si-face-capped TiSi7 capped pentagonal bipyramid, respectively. The ground state structures obtained herein for the neutral TiSin clusters agree well with those of Guo et al. except for TiSi3 and TiSi8. Adding or removing an electron greatly changes some ground state structures, i.e. for TiSi3 /TiSi3 +, TiSi5 , TiSi6 /TiSi6 + TiSi7 and TiSi8 /TiSi8 +; others are almost unchanged, e.g. TiSi2 /TiSi2 +, TiSi4 /TiSi4 +, TiSi5 + and TiSi7 +. Based on the optimized geometries, various energetic properties, including binding energies, fragmentation energies, second-order difference energies, HOMO–LUMO energy gaps, ionization potentials and electron affinities, were calculated for all the most stable isomers. The average binding energies reveal that all of TiSin/TiSi +n /TiSi n (n = 1–8) clusters can continue to gain energy as the size increasing. The fragmentation energies and second-order energy differences suggest that neutral TiSi5, anionic TiSi5 and cationic TiSi6 + are relatively stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Chesnovsky, S. H. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley (1987). Chem. Phys. Lett. 138, 119.

    Article  Google Scholar 

  2. C. C. Arnold, T. N. Kitsopoulos, and D. M. Neumark (1993). J. Chem. Phys. 99, 766.

    Article  CAS  Google Scholar 

  3. C. C. Arnold and D. M. Neumark (1994). J. Chem. Phys. 100, 1797.

    Article  CAS  Google Scholar 

  4. C. C. Arnold and D. M. Neumark (1993). J. Chem. Phys. 99, 3353.

    Article  CAS  Google Scholar 

  5. T. N. Kitsopoulos, C. J. Chick, A. Weaver, and D. M. Neumark (1990). J. Chem. Phys. 93, 6108.

    Article  CAS  Google Scholar 

  6. C. Xu, T. R. Taylor, G. R. Burton, and D. M. Neumark (1998). J. Chem. Phys. 108, 1395.

    Article  CAS  Google Scholar 

  7. K. Raghavachari and C. M. Rohlfing (1988). Chem. Phys. Lett. 143, 428.

    Article  CAS  Google Scholar 

  8. C. M. Rohlfing and K. Raghavachari (1990). Chem. Phys. Lett. 167, 559.

    Article  CAS  Google Scholar 

  9. K. Raghavachari and C. M. Rohlfing (1992). Chem. Phys. Lett. 198, 521.

    Article  CAS  Google Scholar 

  10. C. M. Rohlfing and K. Raghavachari (1992). J. Chem. Phys. 96, 2114.

    Article  CAS  Google Scholar 

  11. K. Raghavachari and C. M. Rohlfing (1988). J. Chem. Phys. 89, 2219.

    Article  CAS  Google Scholar 

  12. K. Raghavachari and C. M. Rohlfing (1991). J. Chem. Phys. 94, 3670.

    Article  CAS  Google Scholar 

  13. K. Raghavachari (1986). J. Chem. Phys. 84, 5672.

    Article  CAS  Google Scholar 

  14. K. Raghavachari (1985). J. Chem. Phys. 83, 3520.

    Article  CAS  Google Scholar 

  15. K. Raghavachari and V. Logovinsky (1985). Phys. Rev. Lett. 55, 2853.

    Article  CAS  Google Scholar 

  16. L. A. Curtiss, P. W. Deutsch, and K. Raghavachari (1992). J. Chem. Phys. 96, 6868.

    Article  CAS  Google Scholar 

  17. K. Raghavachari (1989). Z. Phys. D 12, 61.

    Article  CAS  Google Scholar 

  18. K. Raghavachari (1990). Phase Transit. 24–26, 61.

    Article  Google Scholar 

  19. R. Fournier, S. B. Sinnott, and A. E. DePristo (1992). J. Chem. Phys. 97, 4149.

    Article  CAS  Google Scholar 

  20. R. O. Jones (1999). J. Chem. Phys. 110, 5189.

    Article  CAS  Google Scholar 

  21. K.-M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. Fye, and M. F. Jarrold (1998). Nature 392, 582.

    Article  CAS  Google Scholar 

  22. F. Hagelberg, J. Leszczynski, and V. Murashov (1998). J. Mol. Struct. Theochem 454, 209.

    Article  CAS  Google Scholar 

  23. I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. Michael Siu, and K. A. Jackson (2000). Phys. Rev. Lett. 85, 546.

    Article  CAS  Google Scholar 

  24. S. M. Beck (1987). J. Chem. Phys. 87, 4233.

    Article  CAS  Google Scholar 

  25. S. M. Beck (1989). J. Chem. Phys. 90, 6306.

    Article  CAS  Google Scholar 

  26. H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett. 86, 1733.

    Article  CAS  Google Scholar 

  27. C. Y. Xiao, A. Abraham, R. Quinn, F. Hagelberg, and W. A. Lester Jr (2002). J. Phys. Chem. A 106, 11380.

    Article  CAS  Google Scholar 

  28. H. G. Xu, M. M. Wu, Z. G. Zhang, Q. Sun, and W. J. Zheng (2011). Chin. Phys. B 20, (4), 043102.

    Article  Google Scholar 

  29. L. J. Guo, X. Liu, G. F. Zhao, and Y. H. Luo (2007). J. Chem. Phys. 126, 234704.

    Article  Google Scholar 

  30. H. G. Xu, Z. G. Zhang, Y. Feng, J. Y. Yuan, Y. C. Zhao, and W. J. Zheng (2010). Chem. Phys. Lett. 487, 204.

    Article  CAS  Google Scholar 

  31. J. G. Han and F. Hagelberg (2001). Chem. Phys. 263, 255.

    Article  CAS  Google Scholar 

  32. H. Kawamura, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B 70, 245433.

    Article  Google Scholar 

  33. W. J. Zheng, J. M. Nilles, D. Radisic, and K. H. Bowen (2005). J. Chem. Phys. 122, 071101.

    Article  Google Scholar 

  34. J. R. Li, G. H. Wang, C. H. Yao, Y. W. Mu, J. G. Wan, and M. Han (2009). J. Chem. Phys. 130, 164514.

    Article  Google Scholar 

  35. L. Ma, J. J. Zhao, J. G. Wang, B. L. Wang, Q. L. Lu, and G. H. Wang (2006). Phys. Rev. B 73, 125439.

    Article  Google Scholar 

  36. S. N. Khanna, B. K. Rao, P. Jena, and S. K. Nayak (2006). Chem. Phys. Lett. 373, 433.

    Article  Google Scholar 

  37. J. G. Wang, J. J. Zhao, L. Ma, B. L. Wang, and G. H. Wang (2007). Phys. Lett. A 367, 335.

    Article  CAS  Google Scholar 

  38. Z. Y. Ren, F. Li, P. Guo, and J. G. Han (2005). J. Mol. Struct. Theochem 718, 165.

    Article  CAS  Google Scholar 

  39. J. R. Li, C. H. Yao, Y. W. Mu, J. G. Wan, and M. Han (2009). J. Mol. Struct. Theochem 916, 139.

    Article  CAS  Google Scholar 

  40. J. Wang, Q. M. Ma, Z. Xie, Y. Liu, and Y. C. Li (2007). Phys. Rev. B 76, 035406.

    Article  Google Scholar 

  41. C. Y. Xiao, F. Hagelberg, and W. A. Lester Jr (2002). Phys. Rev. B 66, 075425.

    Article  Google Scholar 

  42. Y. Z. Lan and Y. L. Feng (2009). Phys. Rev. A 79, 033201.

    Article  Google Scholar 

  43. A. P. Yang, Z. Y. Ren, P. Guo, and G. H. Wang (2008). J. Mol. Struct. Theochem 856, 88.

    Article  CAS  Google Scholar 

  44. J. Wang and J. G. Han (2005). J. Chem. Phys. 123, 064306.

    Article  Google Scholar 

  45. J. G. Han and F. Hagelberg (2001). J. Mol. Struct. Theochem 549, 165.

    Article  CAS  Google Scholar 

  46. F. C. Chuang, Y. Y. Hsieh, C. C. Hsu, and M. A. Albao (2007). J. Chem. Phys. 127, 144313.

    Article  Google Scholar 

  47. P. Guo, Z. Y. Ren, F. Wang, J. Bian, J. G. Han, and G. H. Wang (2004). J. Chem. Phys. 121, 12265.

    Article  CAS  Google Scholar 

  48. P. Guo, Z. Y. Ren, A. P. Yang, J. G. Han, J. Bian, and G. H. Wang (2006). J. Phys. Chem. A 110, 7453.

    Article  CAS  Google Scholar 

  49. J. G. Han, C. Y. Xiao, and F. Hagelberg (2002). Struct. Chem. 13, 173.

    Article  CAS  Google Scholar 

  50. J. G. Han, Z. Y. Ren, and B. Z. Lu (2004). J. Phys. Chem. A 108, 5100.

    Article  CAS  Google Scholar 

  51. J. G. Han (2003). Chem. Phys. 286, 181.

    Article  CAS  Google Scholar 

  52. J. Wang, Y. Liu, and Y. C. Li (2010). Phys. Lett. A 374, 2736.

    Article  CAS  Google Scholar 

  53. V. T. Ngan, P. Gruene, P. Claes, E. Janssens, A. Fielicke, M. T. Nguyen, and P. Lievens (2010). J. Am. Chem. Soc. 132, 15589.

    Article  CAS  Google Scholar 

  54. P. Claes, E. Janssens, V. T. Ngan, P. Gruene, J. T. Lyon, D. J. Harding, A. Fielicke, M. T. Nguyen, and P. Lievens (2011). Phys. Rev. Lett. 107, 173401.

    Article  CAS  Google Scholar 

  55. H.-K. Lin, Y.-F. Tzeng, C.-H. Wang, N.-H. Tai, I.-N. Lin, C.-Y. Lee, and H.-T. Chiu (2008). Chem. Mater. 20, 2429.

    Article  CAS  Google Scholar 

  56. E. Bucher, S. Schultz, M. C. Lux-Steiner, P. Munz, U. Gubler, and F. Greuter (1986). Appl. Phys. A Mater. Sci. Process 40, 71.

    Article  Google Scholar 

  57. S. P. Murarka and D. B. Fraser (1980). J. Appl. Phys. 51, 350.

    Article  CAS  Google Scholar 

  58. M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya (2003). Chem. Phys. Lett. 371, 490.

    Article  CAS  Google Scholar 

  59. K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima (2005). J. Am. Chem. Soc. 127, 4998.

    Article  CAS  Google Scholar 

  60. P. Sen and L. Mitas (2003). Phys. Rev. B 68, 155404.

    Article  Google Scholar 

  61. H. Kawamura, V. Kumar, and Y. Kawamzoe (2004). Phys. Rev. B 70, 193402.

    Article  Google Scholar 

  62. H. Kawamura, V. Kumar, and Y. Kawazoe (2005). Phys. Rev. B 71, 075423.

    Article  Google Scholar 

  63. C. L. Reis and J. M. Pacheco (2010). J. Phys.: Condens. Matter 22, 035501.

    Article  CAS  Google Scholar 

  64. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D. 01 (Gaussian, Inc., Wallingford CT, 2004).

  65. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  66. C. Lee, W. T. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  67. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650.

    Article  CAS  Google Scholar 

  68. L. A. Curtiss, M. P. McGrath, J. P. Blaudeau, N. E. Davis, R. C. Binning Jr, and L. Radom (1995). J. Chem. Phys. 103, 6104.

    Article  CAS  Google Scholar 

  69. A. J. H. Wachters (1970). J. Chem. Phys. 52, 1033.

    Article  CAS  Google Scholar 

  70. P. J. Hay (1977). J. Chem. Phys. 66, 4377.

    Article  CAS  Google Scholar 

  71. K. Raghavachari and G. W. Trucks (1989). J. Chem. Phys. 91, 1062.

    Article  Google Scholar 

  72. A. A. Shvartsburg, B. Liu, M. F. Jarrold, and K. M. Ho (2000). J. Chem. Phys. 112, 4517.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the 973 program (2009CB226109) in China, the Guangdong provincial natural science foundation (10151063101000041) and the postdoctoral science foundation (20110490903) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Li or Hongyu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C., Zhou, L., Li, G. et al. Theoretical Studies on the Structures and Stabilities of Charged, Titanium-Doped, Small Silicon Clusters, TiSi n /TiSi +n (n = 1–8). J Clust Sci 23, 975–993 (2012). https://doi.org/10.1007/s10876-012-0483-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0483-x

Keywords

Navigation