Skip to main content
Log in

Eosinophils Induce Airway Smooth Muscle Cell Proliferation

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling and Asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med. 2000;161(5):1720–45.

    PubMed  CAS  Google Scholar 

  2. Walker TR, Moore SM, Lawson MF, Panettieri Jr RA, Chilvers ER. Platelet-derived growth factor-BB and thrombin activate phosphoinositide 3-kinase and protein kinase B: role in mediating airway smooth muscle proliferation. Mol Pharmacol. 1998;54(6):1007–15.

    PubMed  CAS  Google Scholar 

  3. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, et al. Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol. 2004;114(2 Suppl):S2–S17. doi:10.1016/j.jaci.2004.04.039S0091674904014125.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson PR, Burgess JK. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr Allergy Asthma Rep. 2004;4(2):102–8.

    Article  PubMed  Google Scholar 

  5. Joubert P, Lajoie-Kadoch S, Labonte I, Gounni AS, Maghni K, Wellemans V, et al. CCR3 expression and function in asthmatic airway smooth muscle cells. J Immunol. 2005;175(4):2702–8.

    PubMed  CAS  Google Scholar 

  6. Panettieri Jr RA. Airway smooth muscle: an immunomodulatory cell. J Allergy Clin Immunol. 2002;110(6 Suppl):S269–74.

    Article  PubMed  CAS  Google Scholar 

  7. Hakonarson H, Maskeri N, Carter C, Grunstein MM. Regulation of TH1- and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle. J Clin Invest. 1999;103(7):1077–87. doi:10.1172/JCI5809.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson PR. Role of human airway smooth muscle in altered extracellular matrix production in asthma. Clin Exp Pharmacol Physiol. 2001;28(3):233–6.

    Article  PubMed  CAS  Google Scholar 

  9. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323(15):1033–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gleich GJ. The eosinophil and bronchial asthma: current understanding. J Allergy Clin Immunol. 1990;85(2):422–36.

    Article  PubMed  CAS  Google Scholar 

  11. Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003;112(7):1029–36. doi:10.1172/JCI17974112/7/1029.

    PubMed  CAS  Google Scholar 

  12. Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, et al. Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol. 2004;31(1):62–8. doi:10.1165/rcmb.2003-0305OC2003-0305OC.

    Article  PubMed  CAS  Google Scholar 

  13. Kay AB, Phipps S, Robinson DS. A role for eosinophils in airway remodelling in asthma. Trends Immunol. 2004;25(9):477–82. doi:10.1016/j.it.2004.07.006S1471-4906(04)00214-5.

    Article  PubMed  CAS  Google Scholar 

  14. Singh RK, Gupta S, Dastidar S, Ray A. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology. 2010;85(6):336–49. doi:10.1159/000312669.

    Article  PubMed  CAS  Google Scholar 

  15. Sagara H, Okada T, Okumura K, Ogawa H, Ra C, Fukuda T, et al. Activation of TGF-beta/Smad2 signaling is associated with airway remodeling in asthma. J Allergy Clin Immunol. 2002;110(2):249–54.

    Article  PubMed  CAS  Google Scholar 

  16. Arm JP. Leukotriene generation and clinical implications. Allergy Asthma Proc. 2004;25(1):37–42.

    PubMed  CAS  Google Scholar 

  17. Nicosia S, Capra V, Rovati GE. Leukotrienes as mediators of asthma. Pulm Pharmacol Ther. 2001;14(1):3–19. doi:10.1006/pupt.2000.0262S1094-5539(00)90262-1.

    Article  PubMed  CAS  Google Scholar 

  18. Hallstrand TS, Henderson Jr WR. The evolving role of intravenous leukotriene modifiers in acute asthma. J Allergy Clin Immunol. 2010;125(2):381–2. doi:10.1016/j.jaci.2009.12.991.

    Article  PubMed  CAS  Google Scholar 

  19. Bosse Y, Stankova J, Rola-Pleszczynski M. Cysteinyl-leukotrienes in asthmatic airway smooth muscle cell hyperplasia. Ann Allergy Asthma Immunol. 2009;102(1):16–21. doi:10.1016/S1081-1206(10)60102-0.

    Article  PubMed  Google Scholar 

  20. Masu K, Ohno I, Suzuki K, Okada S, Hattori T, Shirato K. Proliferative effects of eosinophil lysates on cultured human airway smooth muscle cells. Clin Exp Allergy. 2002;32(4):595–601.

    Article  PubMed  CAS  Google Scholar 

  21. (2000) Proceedings of the ATS workshop on refractory asthma: current understanding, recommendations, and unanswered questions. American Thoracic Society. Am J Respir Crit Care Med 162(6):2341–51

  22. Hansel TT, De Vries IJ, Iff T, Rihs S, Wandzilak M, Betz S, et al. An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods. 1991;145(1–2):105–10.

    Article  PubMed  CAS  Google Scholar 

  23. Govindaraju V, Michoud MC, Al-Chalabi M, Ferraro P, Powell WS, Martin JG. Interleukin-8: novel roles in human airway smooth muscle cell contraction and migration. Am J Physiol Cell Physiol. 2006;291(5):C957–65. doi:10.1152/ajpcell.00451.2005.

    Article  PubMed  CAS  Google Scholar 

  24. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74. doi:10.1146/annurev.immunol.24.021605.090720.

    Article  PubMed  CAS  Google Scholar 

  25. Munoz NM, Hamann KJ, Rabe KF, Sano H, Zhu X, Leff AR. Augmentation of eosinophil degranulation and LTC(4) secretion by integrin-mediated endothelial cell adhesion. Am J Physiol. 1999;277(4 Pt 1):L802–10.

    PubMed  CAS  Google Scholar 

  26. Parameswaran K, Cox G, Radford K, Janssen LJ, Sehmi R, O’Byrne PM. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med. 2002;166(5):738–42.

    Article  PubMed  Google Scholar 

  27. Lopez AF, Eglinton JM, Gillis D, Park LS, Clark S, Vadas MA. Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils. Proc Natl Acad Sci U S A. 1989;86(18):7022–6.

    Article  PubMed  CAS  Google Scholar 

  28. Ingley E, Young IG. Characterization of a receptor for interleukin-5 on human eosinophils and the myeloid leukemia line HL-60. Blood. 1991;78(2):339–44.

    PubMed  CAS  Google Scholar 

  29. Chihara J, Plumas J, Gruart V, Tavernier J, Prin L, Capron A, et al. Characterization of a receptor for interleukin 5 on human eosinophils: variable expression and induction by granulocyte/macrophage colony-stimulating factor. J Exp Med. 1990;172(5):1347–51.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson PR, Black JL, Carlin S, Ge Q, Underwood PA. The production of extracellular matrix proteins by human passively sensitized airway smooth-muscle cells in culture: the effect of beclomethasone. Am J Respir Crit Care Med. 2000;162(6):2145–51.

    PubMed  CAS  Google Scholar 

  31. Hirst SJ, Twort CH, Lee TH. Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol. 2000;23(3):335–44.

    PubMed  CAS  Google Scholar 

  32. Panettieri RA, Tan EM, Ciocca V, Luttmann MA, Leonard TB, Hay DW. Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction In vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol. 1998;19(3):453–61.

    PubMed  CAS  Google Scholar 

  33. Laviolette M, Ferland C, Comtois JF, Champagne K, Bosse M, Boulet LP. Blood eosinophil leukotriene C4 production in asthma of different severities. Eur Respir J. 1995;8(9):1465–72.

    PubMed  CAS  Google Scholar 

  34. Takafuji S, Bischoff SC, De Weck AL, Dahinden CA. IL-3 and IL-5 prime normal human eosinophils to produce leukotriene C4 in response to soluble agonists. J Immunol. 1991;147(11):3855–61.

    PubMed  CAS  Google Scholar 

  35. Zhu Y, Bertics PJ. Chemoattractant-induced signaling via the Ras-ERK and PI3K-Akt networks, along with leukotriene C4 release, is dependent on the tyrosine kinase Lyn in IL-5- and IL-3-primed human blood eosinophils. J Immunol. 2011;186(1):516–26. doi:10.4049/jimmunol.1000955.

    Article  PubMed  CAS  Google Scholar 

  36. Fabian I, Kletter Y, Mor S, Geller-Bernstein C, Ben-Yaakov M, Volovitz B, et al. Activation of human eosinophil and neutrophil functions by haematopoietic growth factors: comparisons of IL-1, IL-3, IL-5 and GM-CSF. Br J Haematol. 1992;80(2):137–43.

    Article  PubMed  Google Scholar 

  37. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri Jr RA. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med. 1994;180(3):807–16.

    Article  PubMed  CAS  Google Scholar 

  38. Hughes JM, Arthur CA, Baracho S, Carlin SM, Hawker KM, Johnson PR, et al. Human eosinophil-airway smooth muscle cell interactions. Mediat Inflamm. 2000;9(2):93–9. doi:10.1080/096293500411550.

    Article  CAS  Google Scholar 

  39. Kingham PJ, McLean WG, Sawatzky DA, Walsh MT, Costello RW. Adhesion-dependent interactions between eosinophils and cholinergic nerves. Am J Physiol Lung Cell Mol Physiol. 2002;282(6):L1229–38. doi:10.1152/ajplung.00278.2001.

    PubMed  CAS  Google Scholar 

  40. Walsh MT, Curran DR, Kingham PJ, Morgan RK, Durcan N, Gleich GJ, et al. Effect of eosinophil adhesion on intracellular signaling in cholinergic nerve cells. Am J Respir Cell Mol Biol. 2004;30(3):333–41. doi:10.1165/rcmb.2003-0188OC2003-0188OC.

    Article  PubMed  CAS  Google Scholar 

  41. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399(6738):789–93. doi:10.1038/21658.

    Article  PubMed  CAS  Google Scholar 

  42. Chibana K, Ishii Y, Asakura T, Fukuda T. Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. J Immunol. 2003;170(8):4290–5.

    PubMed  CAS  Google Scholar 

  43. Espinosa K, Bosse Y, Stankova J, Rola-Pleszczynski M. CysLT1 receptor upregulation by TGF-beta and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol. 2003;111(5):1032–40.

    Article  PubMed  CAS  Google Scholar 

  44. Henderson Jr WR, Chiang GK, Tien YT, Chi EY. Reversal of allergen-induced airway remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006;173(7):718–28. doi:10.1164/rccm.200501-088OC.

    Article  PubMed  CAS  Google Scholar 

  45. Halwani R, Al-Abri J, Beland M, Al-Jahdali H, Halayko AJ, Lee TH, et al. CC and CXC chemokines induce airway smooth muscle proliferation and survival. J Immunol. 2011;186(7):4156–63. doi:10.4049/jimmunol.1001210.

    Article  PubMed  CAS  Google Scholar 

  46. O’Byrne PM. Leukotrienes, airway hyperresponsiveness, and asthma. Ann N Y Acad Sci. 1988;524:282–8.

    Article  PubMed  Google Scholar 

  47. Ramsay CF, Sullivan P, Gizycki M, Wang D, Swern AS, Barnes NC, et al. Montelukast and bronchial inflammation in asthma: a randomised, double-blind placebo-controlled trial. Respir Med. 2009;103(7):995–1003. doi:10.1016/j.rmed.2009.01.019.

    Article  PubMed  CAS  Google Scholar 

  48. Weiss JW, Drazen JM, Coles N, McFadden Jr ER, Weller PF, Corey EJ, et al. Bronchoconstrictor effects of leukotriene C in humans. Science. 1982;216(4542):196–8.

    Article  PubMed  CAS  Google Scholar 

  49. Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY. Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis. 1990;142(1):112–9.

    PubMed  CAS  Google Scholar 

  50. Sladek K, Dworski R, Fitzgerald GA, Buitkus KL, Block FJ, Marney Jr SR, et al. Allergen-stimulated release of thromboxane A2 and leukotriene E4 in humans. Effect of indomethacin. Am Rev Respir Dis. 1990;141(6):1441–5.

    PubMed  CAS  Google Scholar 

  51. Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, et al. Inhibition of airway remodeling in IL-5-deficient mice. J Clin Invest. 2004;113(4):551–60. doi:10.1172/JCI19133.

    PubMed  CAS  Google Scholar 

  52. Wegmann M, Goggel R, Sel S, Erb KJ, Kalkbrenner F, Renz H, et al. Effects of a low-molecular-weight CCR-3 antagonist on chronic experimental asthma. Am J Respir Cell Mol Biol. 2007;36(1):61–7. doi:10.1165/rcmb.2006-0188OC.

    Article  PubMed  CAS  Google Scholar 

  53. Munitz A, Bachelet I, Levi-Schaffer F. Reversal of airway inflammation and remodeling in asthma by a bispecific antibody fragment linking CCR3 to CD300a. J Allergy Clin Immunol. 2006;118(5):1082–9. doi:10.1016/j.jaci.2006.07.041.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Plan for Sciences and Technology, King Saud University, Riyadh, Saudi Arabia (grant number 09-BIO907-02) and Merck Frost (grant number 37561). The Meakins-Christie Laboratories and the McGill University Health Centre-Research Institute (MUHC-RI) are supported in part by a Center grant from Le Fonds de la Recherche en Santé du Québec (FRSQ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Al-Muhsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halwani, R., Vazquez-Tello, A., Sumi, Y. et al. Eosinophils Induce Airway Smooth Muscle Cell Proliferation. J Clin Immunol 33, 595–604 (2013). https://doi.org/10.1007/s10875-012-9836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9836-3

Keywords

Navigation