Skip to main content
Log in

Airway smooth muscle and fibroblasts in the pathogenesis of asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Asthma is a disease characterized by marked structural changes within the airway wall. These changes include deposition of extracellular matrix proteins and an increase in the numbers of airway smooth muscle cells and subepithelial fibroblasts. Both these cell types possess properties that would enable them to be involved in remodeling and inflammation. These properties include the production of a variety of cytokines; growth factors and fibrogenic mediators; proliferation, migration and release of extracellular matrix proteins; matrix metalloproteinases; and their tissue inhibitors. Airway smooth muscle and subepithelial fibroblasts are likely to be key players in the asthmatic airway pathophysiology through their interaction with each other, inflammatory cells, and other mesenchymal cells, such as the epithelium. Current asthma therapies lack the ability to completely prevent or reverse the remodeling of the airways, therefore indicating the need for new therapeutic strategies to counter this important aspect of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lambert R, Wiggs B, Kuwano K, et al.: Functional significance of increased airway smooth muscle in asthma and COPD J Appl Physiol 1993, 74:2771–2781.

    Article  PubMed  CAS  Google Scholar 

  2. Fredberg JJ: Airway smooth muscle in asthma: flirting with disaster. Eur Respir J 1998, 12:1252–1256.

    Article  PubMed  CAS  Google Scholar 

  3. Westergren-Thorsson G, Chakir J, Lafreniere-Allard MJ, et al.: Correlation between airway responsiveness and proteoglycan production by bronchial fibroblasts from normal and asthmatic subjects. Int J Biochem Cell Biol 2002, 34:1256–1267.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson P, Underwood P, Carlin S, et al.: Human atopic asthmatic serum causes increased production of matrix proteins from human airway smooth muscle cells in culture. Am J Respir Crit Care Med 1998, 157:A268.

    Google Scholar 

  5. Evans MJ, Van Winkle LS, Fanucchi MV, Plopper CG: The attenuated fibroblast sheath of the respiratory tract epithelialmesenchymal trophic unit. Am J Respir Cell Mol Biol 1999, 21:655–657.

    PubMed  CAS  Google Scholar 

  6. Akiyama SK, Yamada SS, Chen WT, Yamada KM: Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 1989, 109:863–875.

    Article  PubMed  CAS  Google Scholar 

  7. Erle DJ, Pytela R: How do integrins integrate? The role of cell adhesion receptors in differentiation and development. Am J Respir Cell Mol Biol 1992, 6:459–460.

    PubMed  CAS  Google Scholar 

  8. Vignola AM, Chanez P, Chiappara G, et al.: Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med 1997, 156:591–599.

    PubMed  CAS  Google Scholar 

  9. Spurzem JR: Function at the junction: dynamic interactions between lung cells and extracellular matrix. Thorax 1996, 51:956–958.

    PubMed  CAS  Google Scholar 

  10. Anwar AR, Moqbel R, Walsh GM, et al.: Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 1993, 177:839–843.

    Article  PubMed  CAS  Google Scholar 

  11. Roberts CR, Burke AK: Remodelling of the extracellular matrix in asthma: proteoglycan synthesis and degradation. Can Respir J 1998, 5:48–450.

    PubMed  CAS  Google Scholar 

  12. Roche WR, Beasley R, Williams JH, Holgate ST: Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989, 1:520–524.

    Article  PubMed  CAS  Google Scholar 

  13. Laitinen LA, Laitinen A, Altraja A, et al.: Bronchial biopsy findings in intermittent or "early" asthma. J Allergy Clin Immunol 1996, 98:S3-S6.

    Article  PubMed  CAS  Google Scholar 

  14. Laitinen A, Altraja A, Kampe M, et al.: Tenascin is increased in airway basement membrane of asthmatics and decreased by an inhaled steroid. Am J Respir Crit Care Med 1997, 156:951–958.

    PubMed  CAS  Google Scholar 

  15. Bousquet J, Chanez P, Lacoste JY, et al.: Asthma: a disease remodeling the airways. Allergy 1992, 47:3–11.

    Article  PubMed  CAS  Google Scholar 

  16. Bai TR, Cooper J, Koelmeyer T, et al.: The effect of age and duration of disease on airway structure in fatal asthma. Am J Respir Crit Care Med 2000, 162:663–669.

    PubMed  CAS  Google Scholar 

  17. Thompson RJ, Schellenberg RR: Increased amounts of airway smooth muscle does not account for excessive bronchoconstriction in asthma. Can Respir J 1998, 5:61–62.

    Google Scholar 

  18. Brewster CE, Howarth PH, Djukanovic R, et al.: Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1990, 3:507–511.

    PubMed  CAS  Google Scholar 

  19. Dunsmore SE, Lee YC, Martinez-Williams C, Rannels DE: Synthesis of fibronectin and laminin by type II pulmonary epithelial cells. Am J Physiol 1996, 270:L215-L223.

    PubMed  CAS  Google Scholar 

  20. Ohno I, Ohtani Y, Nitta Y, et al.: Eosinophils as a source of matrix metalloproteinase-9 in asthmatic airway inflammation. Am J Respir Cell Mol Biol 1997, 16:212–219.

    PubMed  CAS  Google Scholar 

  21. Mautino G, Henriquet C, Goughat C, et al.: Increased expression of tissue inhibitor of metalloproteinase-1 and loss of correlation with matrix metalloproteinase-9 by macrophages in asthma. Lab Invest 1999, 79:39–47.

    PubMed  CAS  Google Scholar 

  22. Xu J, Benyon RC, Leir SH, et al.: Matrix metalloproteinase-2 from bronchial epithelial cells induces the proliferation of subepithelial fibroblasts. Clin Exp Allergy 2002, 32:881–888.

    Article  PubMed  CAS  Google Scholar 

  23. Rajah R, Nunn SE, Herrick DJ, et al.: Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. Am J Physiol 1996, 271:L1014-L1022.

    PubMed  CAS  Google Scholar 

  24. Johnson S, Knox A: Autocrine production of matrix metalloproteinase-2 is required for human airway smooth muscle proliferation. Am J Physiol Lung Cell Mol Physiol 1999, 277:L1109-L1117.

    CAS  Google Scholar 

  25. Laliberte R, Rouabhia M, Bosse M, Chakir J: Decreased capacity of asthmatic bronchial fibroblasts to degrade collagen. Matrix Biol 2001, 19:743–53.

    Article  PubMed  CAS  Google Scholar 

  26. Vignola A, Riccobono L, Mirabella A, et al.: Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 1998, 158:1945–1950.

    PubMed  CAS  Google Scholar 

  27. Ebina M, Takahashi T, Chiba T, Motomiya M: Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am Rev Respir Dis 1993, 148:720–726.

    PubMed  CAS  Google Scholar 

  28. Ammit AJ, Panettieri RA Jr:: Invited review: the circle of life: cell cycle regulation in airway smooth muscle. J Appl Physiol 2001, 91:1431–1437.

    PubMed  CAS  Google Scholar 

  29. Naureckas ET, Ndukwu IM, Halayko AJ, et al.: Bronchoalveolar lavage fluid from asthmatic subjects is mitogenic for human airway smooth muscle. Am J Respir Crit Care Med 1999, 160:2062–2066.

    PubMed  CAS  Google Scholar 

  30. Johnson PR, Roth M, Tamm M, et al.: Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med 2001, 164:474–477.

    PubMed  CAS  Google Scholar 

  31. Chambers LS, Black JL, Ge Q, et al.: PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003, 285:L619-L627.

    PubMed  CAS  Google Scholar 

  32. Hirst SJ, Twort CHC: Effects of extracellular matrix on human airway smooth muscle cell proliferation and phenotype. Am J Respir Crit Care Med 1997, 155:A371.

    Google Scholar 

  33. Johnson P, Black J, Perruchoud A, et al.: Atopic asthmatic serum alters expression of matrix metalloproteinases in human bronchial smooth muscle cells [abstract]. Am J Respir Crit Care Med 1999, 159:A260. First report of increased proliferation of asthmatic airway smooth muscle in culture.

    Google Scholar 

  34. Baker AH, Zaltsman AB, George SJ, Newby AC: Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 1998, 101:1478–1487.

    Article  PubMed  CAS  Google Scholar 

  35. Fries KM, Blieden T, Looney RJ, et al.: Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 1994, 72:283–292.

    Article  PubMed  CAS  Google Scholar 

  36. Richter A, Puddicombe SM, Lordan JL, et al.: The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. Am J Respir Cell Mol Biol 2001, 25:385–391.

    PubMed  CAS  Google Scholar 

  37. Dube J, Chakir J, Laviolette M, et al.: In vitro procollagen synthesis and proliferative phenotype of bronchial fibroblasts from normal and asthmatic subjects. Lab Invest 1998, 78:297–307.

    PubMed  CAS  Google Scholar 

  38. Davies DE, Holgate ST: Asthma: the importance of epithelial mesenchymal communication in pathogenesis: inflammation and the airway epithelium in asthma. Int J Biochem Cell Biol 2002, 34:1520–1526. The importance of epithelial mesenchymal communication in the pathogenesis of asthma is discussed.

    Article  PubMed  CAS  Google Scholar 

  39. Hayakawa T, Yamashita K, Tanzawa K, et al.: Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells: a possible new growth factor in serum. FEBS Letters 1992, 298:29–32.

    Article  PubMed  CAS  Google Scholar 

  40. Hayakawa T, Yamashita K, Ohuchi E, Shinagawa A: Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci 1994, 107:2373–2379.

    PubMed  CAS  Google Scholar 

  41. Schmidt M, Sun G, Stacey MA, et al.: Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003, 171:380–389.

    PubMed  CAS  Google Scholar 

  42. Carlin SM, Roth M, Black JL: Urokinase potentiates PDGFinduced chemotaxis of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003, 284:L1020-L1026. Airway smooth muscle cells in culture are capable of migration.

    PubMed  CAS  Google Scholar 

  43. Gizycki MJ, Adelroth E, Rogers AV, et al.: Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol 1997, 16:664–673.

    PubMed  CAS  Google Scholar 

  44. Raghow R: Role of transforming growth factor-beta in repair and fibrosis. Chest 1991, 99:61S-65S.

    Article  PubMed  CAS  Google Scholar 

  45. Panettieri RA, Tan EM, Ciocca V, et al.: Effects of LTD4 on human airway smooth muscle cell proliferation, matrix expression, and contraction In vitro: differential sensitivity to cysteinyl leukotriene receptor antagonists. Am J Respir Cell Mol Biol 1998, 19:453–461.

    PubMed  CAS  Google Scholar 

  46. Redington AE, Madden J, Frew AJ, et al.: Transforming growth factor-beta 1 in asthma: measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 1997, 156:642–647.

    PubMed  CAS  Google Scholar 

  47. Minshall EM, Leung DY, Martin RJ, et al.: Eosinophil-associated TGF-beta1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1997, 17:326–333.

    PubMed  CAS  Google Scholar 

  48. Bradham DM, Igarashi A, Potter RL, Grotendorst GR: Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 1991, 114:1285–1294.

    Article  PubMed  CAS  Google Scholar 

  49. Frazier K, Williams S, Kothapalli D, et al.: Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996, 107:404–411.

    Article  PubMed  CAS  Google Scholar 

  50. Burgess JK, Johnson PR, Ge Q, et al.: Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am J Respir Crit Care Med 2003, 167:71–77. First evidence of enhanced release of connective tissue growth factor (a fibrogenic cytokine) from asthmatic airway smooth muscle.

    Article  PubMed  Google Scholar 

  51. Hoshino M, Takahashi M, Takai Y, et al.: Inhaled corticosteroids decrease vascularity of the bronchial mucosa in patients with asthma. Clin Exp Allergy 2001, 31:722–730.

    Article  PubMed  CAS  Google Scholar 

  52. Laitinen L, Laitinen A: Inhaled corticosteroid treatment and extracellular matrix in the airways in asthma. Int Arch Allergy Immunol 1995, 107:215–216.

    Article  PubMed  CAS  Google Scholar 

  53. Jeffery PK, Godfrey RW, Adelroth E, et al.: Effects of treatment on airway inflammation and thickening of basement membrane reticular collagen in asthma: a quantitative light and electron microscopic study. Am Rev Respir Dis 1992, 145:890–899.

    PubMed  CAS  Google Scholar 

  54. Shiels IA, Bowler SD, Taylor SM: The effects of salbutamol, beclomethasone, and dexamethasone on fibronectin expression by cultured airway smooth muscle cells. Inflammation 1999, 23:321–331.

    PubMed  CAS  Google Scholar 

  55. Johnson P, Black J, Tamm M, Roth M: Effect of beclomethasone on expression of matrix metalloproteinases in human bronchial smooth muscle cells exposesd to atopic asthmatic serum [abstract]. Am J Respir Crit Care Med 2000, 161:A442.

    Google Scholar 

  56. Brenner RE, Felger D, Winter C, et al.: Effects of dexamethasone on proliferation, chemotaxis, collagen I, and fibronectin-metabolism of human fetal lung fibroblasts. Pediatr Pulmonol 2001, 32:1–7.

    Article  PubMed  CAS  Google Scholar 

  57. Phan SH, McGarry BM, Loeffler KM, Kunkel SL: Binding of leukotriene C4 to rat lung fibroblasts and stimulation of collagen synthesis in vitro. Biochemistry 1988, 27:2846–2853.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson PR, Black JL, Carlin S, et al.: The production of extracellular matrix proteins by human passively sensitized airway smooth-muscle cells in culture: the effect of beclomethasone. Am J Respir Crit Care Med 2000, 162:2145–2151.

    PubMed  CAS  Google Scholar 

  59. Billington CK, Joseph SK, Swan C, et al.: Modulation of human airway smooth muscle proliferation by type 3 phosphodiesterase inhibition. Am J Physiol 1999, 276:L412-L419.

    PubMed  CAS  Google Scholar 

  60. Roth M, Johnson PR, Rudiger JJ, et al.: Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 2002, 360:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  61. Silvestri M, Fregonese L, Sabatini F, et al.: Fluticasone and salmeterol downregulate in vitro, fibroblast proliferation and ICAM-1 or H-CAM expression. Eur Respir J 2001, 18:139–145.

    Article  PubMed  CAS  Google Scholar 

  62. Hewitson TD, Tait MG, Kelynack KJ, et al.: Dipyridamole inhibits in vitro renal fibroblast proliferation and collagen synthesis. J Lab Clin Med 2002, 140:199–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P.R.A., Burgess, J.K. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr Allergy Asthma Rep 4, 102–108 (2004). https://doi.org/10.1007/s11882-004-0054-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-004-0054-9

Keywords

Navigation