Skip to main content
Log in

Intra-seasonal variability of Pacific-origin sea level anomalies around the Philippine Archipelago

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Intra-seasonal variability of sea level anomalies (SLAs) originated in the Pacific Ocean around the Philippine Archipelago was investigated using merged altimetry SLA measurements and eddy-resolving ocean model outputs. The results suggest the SLA signals from the tropical North Pacific propagate westward as baroclinic Rossby waves on an intra-seasonal time scale. Upon impinging the east coast of the Philippines, these Rossby wave signals transform into coastal trapped waves (CTWs), propagate clockwise along the coast of the Philippine Archipelago and enter into the eastern South China Sea (SCS) through the Sibutu Passage and Mindoro Strait. The SLA signals, however, cannot propagate anticlockwise and enter into the eastern SCS through the Luzon Strait. The intra-seasonal oceanic wave processes are clearly identified by the eddy-resolving model. The effect of along-shore wind forcing on the SLA signals appears insignificant when compared with the remote signals coming from the interior Pacific. While identified in the model simulation, future observations are needed to verify the intra-seasonal CTWs encircling the Philippine Archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amedo CLA, Villanoy, Udarbe-Walker MJ (2002) Indicators of upwelling at the Northern Bicol Shelf, UPV. J Nat Sci 7:42–52

    Google Scholar 

  • Boyer TP, Levitus S (1997) Objective analyses of temperature and salinity for the world ocean on a 1/4° grid, NOAA Atlas NESDIS, 11. US Government Printing Office, Washington, DC

    Google Scholar 

  • Chelton DB, Davis RE (1982) Monthly mean sea-level variability along the west coast of North America. J Phys Oceanogr 12:757–784

    Article  Google Scholar 

  • Chelton DB, Schlax MG (1996) Global observations of oceanic Rossby waves. Science 272(5259):234–238

    Article  Google Scholar 

  • Chelton DB, DeSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460

    Article  Google Scholar 

  • Cheng X, Qi Y (2007) Trends of sea level variations in the South China Sea from merged altimetry data. Glob Planet Chang 57:371–382. doi:10.1016/j.gloplacha.2007.01.005

    Article  Google Scholar 

  • Cheng X, Xie S-P, McCreary JP, Qi Y, Du Y (2013) Intraseasonal variability of sea surface height in the Bay of Bengal. J Geophys Res Oceans 118:816–830. doi:10.1002/jgrc.20075

    Article  Google Scholar 

  • Dibarboure G, Lauret O, Mertz F, Rosmorduc V, Maheu C (2008) SSALTO/DUACS user handbook: (M) SLA and (M) ADT near-real time and delayed time products, Rep. CLS-DOS-NT-06.034, Aviso Altimery, Ramonville St. Agne, France, p 39

  • Du Y, Qu T (2010) Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dyn Atmos Oceans. doi:10.1016/j.dynatmoce.2010.04.001

    Google Scholar 

  • Durland TS, Qiu B (2003) Transmission of subinertial Kelvin waves through a strait. J Phys Oceanogr 33:1337–1350

    Article  Google Scholar 

  • Enfield DB, Allen JS (1980) On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J Phys Oceanogr 10:557–578

    Article  Google Scholar 

  • Fang G, Chen H, Wei Z, Wang Y, Wang X, Li C (2006) Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J Geophys Res 111:C11S16. doi:10.1029/2005JC003276

    Google Scholar 

  • Han W, Moore AM, Di Lorenzo E, Gordon AL, Lin J (2008) Seasonal surface ocean circulation and dynamics in the Philippine archipelago region during 2004–2008. Dyn Atmos Oceans 47:114–137

    Article  Google Scholar 

  • Hsin Y-C, Wu C-R, Chao S-Y (2012) An updated examination of the Luzon Strait transport. J Geophys Res 117:C03022. doi:10.1029/2011JC007714

    Google Scholar 

  • Hu J, Kawanura H, Hong H, Kobashi F, Wang D (2001) 3–6 months variations of sea surface height in the South China Sea and its adjacent ocean. J Oceanogr 57:69–78. doi:10.1023/A:1011126804461

    Article  Google Scholar 

  • Hu J, Zheng Q, Sun Z, Tai CK (2012) Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J Geophys Res 117:C03010. doi:10.1029/2011JC007525

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kim YY, Qu T, Jensen T, Miyama T, Mitsudera H, Kang H-W, Ishida A (2004) Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J Geophys Res 109:C03040. doi:10.1029/2003JC002013

    Google Scholar 

  • Le Traon PY, Dibarboure G (1999) Mesoscale mapping capabilities of multi-satellite altimeter missions. J Atmos Oceanic Technol 16:1208–1223. doi:10.1175/1520-0426(1999)016<1208:MMCOMS>2.0.CO;2

    Article  Google Scholar 

  • Li L, Jing C, Zhu DY (2007) Coupling and propagating of mesoscale sea level variability between the western Pacific and the South China Sea. Chin Sci Bull 52(12):1699–1707. doi:10.1007/s11434-007-0203-3

    Article  Google Scholar 

  • Liang W-D, Yang YJ, Tang TY, Chuang W-S (2008) Kuroshio in the Luzon Strait. J Geophys Res 113:C08048. doi:10.1029/2007JC004609

    Google Scholar 

  • Liu Q, Li L (2007) Baroclinic stability of oceanic Rossby wave in the North Pacific subtropical eastwards contourcurrent. Chin J Geogphys 50(1):84–93. doi:10.1002/cjg2.1013

    Google Scholar 

  • Liu Q, Feng M, Wang D (2011) ENSO-induced interannual variability in the southeastern South China Sea. J Oceanogr 67:127–133. doi:10.1007/s10872-011-0002-y

    Article  Google Scholar 

  • Lu J, Liu Q (2013) Gap-leaping Kuroshio and blocking westward-propagating Rossby waves and eddy in the Luzon Strait. J Geophys Res Oceans 118:1170–1181. doi:10.1002/jgrc.20116

    Article  Google Scholar 

  • Masumoto Y et al (2004) A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth simulator). J Earth Simulator 1:31–52

    Google Scholar 

  • Metzger EJ, Hurlburt H (1996) Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res 101:12331–12352

    Article  Google Scholar 

  • Nitani H (1972) Beginning of the Kuroshio. In: Stommel H, Yashida K (eds) Kuroshio: physical aspects of the Japan current. Univ. of Wash. Press, Seattle, pp 129–163

    Google Scholar 

  • Pacanowski RC, Griffies SM (2000) MOM 3.0 manual, technical report. Geophys Fluid Dyn Lab, Princeton, NJ, p 680

  • Qiu B (1999) Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/POSEIDON observations and theory. J Phys Oceanogr 29:2471–2486. doi:10.1175/1520-0485

    Article  Google Scholar 

  • Qiu B, Chen S (2010) Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr 40(11):2525–2538. doi:10.1175/2010JPO4462.1

    Article  Google Scholar 

  • Qiu B, Chen S (2012) Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42(1):193–206. doi:10.1175/JPO-D-11-061.1

    Article  Google Scholar 

  • Qiu B, Lukas R (1996) Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. J Geophys Res 101(C5):12315–12330. doi:10.1029/95JC03204

    Article  Google Scholar 

  • Qiu B, Mao M, Kashino Y (1999) Intra-seasonal variability in the Indo-Pacific Throughflow and the regions surrounding the Indonesian Seas. J Phys Oceanogr 29:1599–1618

    Article  Google Scholar 

  • Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can the Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644–3657. doi:10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    Article  Google Scholar 

  • Sasaki H, Nonaka M (2006) Far-reaching Hawaiian Lee countercurrent driven by wind-stress curl induced by warm SST band along the current. Geophys Res Lett 33:L13602. doi:10.1029/2006GL026540

    Article  Google Scholar 

  • Sasaki H, Sasai Y, Kawahara S, Furuichi M, Araki F, Ishida A, Yamanaka Y, Masumoto Y, Sakuma H (2004) A series of eddy-resolving ocean simulations in the world ocean—OFES (OGCM for the Earth Simulator) project, paper presented at OCEANS 2004 Mar, Technol. Soc., Inst. of Electr. and Electr. Eng., Kobe, Japan

  • Shaw P-T (1991) The seasonal variation of the intrusion of the Philippines sea water into the South China Sea. J Geophys Res 96(C1):821–827

    Article  Google Scholar 

  • Sheremet VA (2001) Hysteresis of a western boundary current leaping across a gap*. J Phys Oceanogr 31(5):1247–1259

    Article  Google Scholar 

  • Sprintall J, Gordon AL, Flament P, Villanoy CL (2012) Observations of exchange between the South China Sea and the Sulu Sea. J Geophys Res 117:C05036. doi:10.1029/2011JC007610

    Google Scholar 

  • Toole JM, Millard RC, Wang Z, Pu S (1990) Observations of the Pacific north equatorial current bifurcation at the Philippine coast. J Phys Oceanogr 20(2):307–318. doi:10.1175/1520-0485(1990)020<0307:OOTPNE>2.0.CO;2

    Article  Google Scholar 

  • Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J Geophys Res 112:C06020. doi:10.1029/2006JC003765

    Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang D, Liu Q, Huang RX, Du Y, Qu T (2006) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605. doi:10.1029/2006GL026316

    Article  Google Scholar 

  • Wentz FJ, Smith DK, Mears CA, Gentemann CL (2001) Advanced algorithms for QuikScat and SeaWinds/AMSR. In: Proc. Int. Geoscience and Remote Sensing Symp., vol 3, Sydney, Australia, IEEE, p 1097–1081

  • Wyrtki K (1961) Physical oceanography of the southeast Asian waters: scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961, NAGA Rep. 2, Scripps Inst. of Oceanogr, La Jolla, Calif, p 195

  • Xie S-P, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22(3):730–747. doi:10.1175/2008JCLI2544.1

    Article  Google Scholar 

  • Zhang Z, Zhao W, Liu Q (2010) Sub-seasonal variability of Luzon Strait Transport in a high resolution global model. Acta Oceanol Sin 29(3):9–17. doi:10.1007/s13131-010-0032-0

    Article  Google Scholar 

  • Zhuang W, Xie S-P, Wang D, Taguchi B, Aiki H, Sasaki H (2010) Intraseasoanl variability in sea surface height over the South China Sea. J Geophys Res 115:C04010. doi:10.1029/2009JC005647

    Google Scholar 

  • Zhuang W, Qiu B, Du Y (2013) Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine archipelago. J Geophys Res Oceans. doi:10.1002/2013JC009376

    Google Scholar 

Download references

Acknowledgments

We acknowledge AVISO for providing SLA data (http://www.aviso.oceanobs.com/en). QuikSCAT data were produced by remote sensing systems and sponsored by the National Aeronautics and Space Administration (NASA) Ocean Vector Winds Science Team. Data are available at www.remss.com. The OFES simulation was conducted on an earth simulator under the support of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The QuikSCAT and OFES data used in this study were obtained from the Asia-Pacific Data-Research Center (APDRC), University of Hawaii (http://apdrc.soest.hawaii.edu). This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Number XDA11010103 and XDA11010203) and National Natural Science Foundation of China (Grant Number 41176024 and 41176023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Qiu, B., Cheng, X. et al. Intra-seasonal variability of Pacific-origin sea level anomalies around the Philippine Archipelago. J Oceanogr 71, 239–249 (2015). https://doi.org/10.1007/s10872-015-0281-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-015-0281-9

Keywords

Navigation