Skip to main content

Advertisement

Log in

Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar-Islas A, Hurst M, Buck K, Sohst B, Smith G, Lohan M, Bruland K (2007) Micro- and macronutrients in the southeastern Bering Sea: insight into iron-replete and iron-depleted regimes. Prog Oceanogr 73(2):99–126. doi:10.1016/j.pocean.2006.12.002

    Article  Google Scholar 

  • Aoyama M, Becker S, Dai M, Daimon H, Gordon LI, Kasai H, Kerouel R, Kress N, Masten D, Murata A, Nagai N, Ogawa H, Ota H, Saito H, Saito K, Shimizu T, Takano H, Tsuda A, Yokouchi K, Youenou A (2007) Recent comparability of oceanographic nutrients data: results of a 2003 intercomparison exercise using reference materials. Anal Sci 23(9):1151–1154

    Article  Google Scholar 

  • Biswas H, Gadi S, Ramana V, Bharathi M, Priyan R, Manjari D, Kumar M (2012) Enhanced abundance of tintinnids under elevated CO2 level from coastal Bay of Bengal. Biodivers Conserv 21(5):1309–1326. doi:10.1007/s10531-011-0209-7

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJ, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NP, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617. doi:10.1126/science.1131669

    Article  Google Scholar 

  • Breitbarth E, Bellerby RJ, Neill CC, Ardelan MV, Meyerh’Ufer M, Z’Ullner E, Croot PL, Riebesell U (2010) Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment. Biogeosciences 7(3):1065–1073. doi:10.5194/bg-7-1065-2010

    Article  Google Scholar 

  • Brzezinski MA (1985) The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J Phycol 21(3):347–357. doi:10.1111/j.0022-3646.1985.00347.x

    Article  Google Scholar 

  • Bucciarelli E, Pondaven P, Sarthou G (2010) Effects of an iron-light co-limitation on the elemental composition (Si, C, N) of the marine diatoms Thalassiosira oceanica and Ditylum brightwellii. Biogeosciences 7(2):657–669. doi:10.5194/bg-7-657-2010

    Article  Google Scholar 

  • Buitenhuis ET, Geider RJ (2010) A model of phytoplankton acclimation to iron-light colimitation. Limnol Oceanogr 55(2):714–724

    Article  Google Scholar 

  • Chierici M, Fransson A, Nojiri Y (2006) Biogeochemical processes as drivers of surface fCO2 in contrasting provinces in the subarctic North Pacific Ocean. Glob Biogeochem Cycles 20: GB1009. doi:10.1029/2004GB002356

  • Culberson CH, Pytkowicz RM, Hawley JE (1970) Seawater alkalinity determination by the pH method. J Mar Res 28:15–21

    Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodynamics 22(2):113–127. doi:10.1016/0021-9614(90)90074-z

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34(10):1733–1743

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Res 1(1):169–192. doi:10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Endo H, Yoshimura T, Kataoka T, Suzuki K (2013) Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. J Exp Mar Biol Ecol 439:160–175. doi:10.1016/j.jembe.2012.11.003

    Article  Google Scholar 

  • Feng Y, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar Ecol Prog Ser 388:13–25

    Article  Google Scholar 

  • Feng Y, Hare CE, Rose JM, Handy SM, DiTullio GR, Lee PA, Smith WO Jr, Peloquin J, Tozzi S, Sun J, Zhang Y, Dunbar RB, Long MC, Sohst B, Lohan M, Hutchins DA (2010) Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep Sea Res I 57(3):368–383

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi:10.1126/science.281.5374.237

    Article  Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64(9):3352–3358

    Google Scholar 

  • Gao K, Xu J, Gao G, Li Y, Hutchins DA, Huang B, Wang L, Zheng Y, Jin P, Cai X, Hader D-P, Li W, Xu K, Liu N, Riebesell U (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Clim Change 2(7):519–523. doi:10.1038/nclimate1507

    Google Scholar 

  • Geider RJ (1987) Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol 106:1–34

    Article  Google Scholar 

  • Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39(3):275–301. doi:10.1007/bf00014588

    Article  Google Scholar 

  • Gifford DJ, Caron DA (2000) Sampling, preservation, enumeration and biomass of marine protozooplankton. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES Zooplankton Methodology Manual. Academic, London, pp 193–221. doi:10.1016/b978-012327645-2/50006-2

  • Grossart HP, Allgaier M, Passow U, Riebesell U (2006) Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol Oceanogr 51(1):1–11

    Article  Google Scholar 

  • Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of Seawater Analysis, 3rd edn. Wiley-VCH, Weinheim, pp 159–228. doi:10.1002/9783527613984.ch10

  • Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16

    Article  Google Scholar 

  • Harrison PJ, Whitney FA, Tsuda A, Saito H, Tadokoro K (2004) Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J Oceanogr 60(1):93–117

    Article  Google Scholar 

  • Holmes RM, Aminot A, Kerouel R, Hooker BA, Peterson BJ (1999) A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can J Fish Aquat Sci 56(10):1801–1808

    Google Scholar 

  • Hopkinson BM, Xu Y, Shi D, McGinn PJ, Morel FMM (2010) The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnol Oceanogr 55(5):2011–2024

    Article  Google Scholar 

  • Hopkinson BM, Dupont CL, Allen AE, Morel FMM (2011) Efficiency of the CO2-concentrating mechanism of diatoms. Proc Natl Acad Sci USA 108(10):3830–3837. doi:10.1073/pnas.1018062108

    Article  Google Scholar 

  • Hutchins DA, Mulholland MR, Fu F (2009) Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22(4):128–145

    Article  Google Scholar 

  • Johnson KM, King AE, Sieburth JM (1985) Coulometric TCO2 analyses for marine studies; an introduction. Mar Chem 16(1):61–82. doi:10.1016/0304-4203(85)90028-3

    Article  Google Scholar 

  • Kim JM, Lee K, Shin K, Kang JH, Lee HW, Kim M, Jang PG, Jang MC (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51(4):1629–1636

    Article  Google Scholar 

  • Langer G, Nehrke G, Probert I, Ly J, Ziveri P (2009) Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6(11):2637–2646

    Article  Google Scholar 

  • Lee K, Tong LT, Millero FJ, Sabine CL, Dickson AG, Goyet C, Park GH, Wanninkhof R, Feely RA, Key RM (2006) Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys Res Lett 33(19):L19605. doi:10.1029/2006GL027207

    Article  Google Scholar 

  • Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10(12):1170–1181. doi:10.1111/j.1461-0248.2007.01117.x

    Article  Google Scholar 

  • Liu H, Suzuki K, Saino T (2002) Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999. Deep Sea Res I 49(2):363–375. doi:10.1016/s0967-0637(01)00056-5

    Article  Google Scholar 

  • Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu Rev Mar Res 1(1):245–278. doi:10.1146/annurev.marine.010908.163727

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907

    Article  Google Scholar 

  • Millero FJ, Woosley R, DiTrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22(4):72–85

    Article  Google Scholar 

  • Mochizuki M, Shiga N, Saito M, Imai K, Nojiri Y (2002) Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep-Sea Res II 49(24–25):5421–5439. doi:10.1016/s0967-0645(02)00209-6

    Article  Google Scholar 

  • Moore JK, Lindsay K, Doney SC, Long MC, Misumi K (2013) Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios. J Clim. doi:10.1175/JCLI-D-12-00566.1

  • Nagata T (2000) Production mechanisms of dissolved organic matter. In: Kirchmann DL (ed) Microbial Ecology of the Oceans. Wiley-Liss, New York, pp 121–152

    Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55(3–4):287–333. doi:10.1016/s0079-6611(02)00138-6

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Price NM (2005) The elemental stoichiometry and composition of an iron-limited diatom. Limnol Oceanogr 50(4):1159–1171

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34(6):1097–1103

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The Sea, vol 2. Wiley, New York, pp 26–77

    Google Scholar 

  • Reinfelder JR (2011) Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu Rev Mar Res 3:291–315

    Article  Google Scholar 

  • Ridal JJ, Moore RM (1990) A re-examination of the measurement of dissolved organic phosphorus in seawater. Mar Chem 29:19–31. doi:10.1016/0304-4203(90)90003-u

    Article  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361(6409):249–251

    Article  Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhofer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zollner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450(7169):545–548. doi:10.1038/nature06267

    Article  Google Scholar 

  • Roberts K, Granum E, Leegood R, Raven J (2007) Carbon acquisition by diatoms. Photosynth Res 93(1–3):79–88. doi:10.1007/s11120-007-9172-2

    Article  Google Scholar 

  • Rose JM, Feng Y, Gobler CJ, Gutierrez R, Hare CE, Leblanc K, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing. Mar Ecol Prog Ser 388:27–40

    Article  Google Scholar 

  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327(5966):676–679

    Article  Google Scholar 

  • Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12:411–418

    Article  Google Scholar 

  • Strickland JDH (1960) Measuring the production of marine phytoplankton. Fish Res Bd Can Bull 122:1–172

    Google Scholar 

  • Sugie K, Yoshimura T (2013) Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae). J Phycol 49(3):475–488. doi:10.1111/jpy.12054

  • Sunda WG (2010) Iron and the carbon pump. Science 327(5966):654–655. doi:10.1126/science.1186151

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N. N-dimethylformamide. J Oceanogr 46(4):190–194

    Google Scholar 

  • Suzuki K, Handa N, Nishida T, Wong CS (1997) Estimation of phytoplankton succession in a fertilized mesocosm during summer using high-performance liquid chromatographic analysis of pigments. J Exp Mar Biol Ecol 214(1–2):1–17. doi:10.1016/s0022-0981(97)00003-8

    Article  Google Scholar 

  • Suzuki K, Liu H, Saino T, Obata H, Takano M, Okamura K, Sohrin Y, Fujishima Y (2002) East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47(6):1581–1594

    Article  Google Scholar 

  • Suzuki K, Hinuma A, Saito H, Kiyosawa H, Liu H, Saino T, Tsuda A (2005) Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow cytometry. Prog Oceanogr 64(2–4):167–187. doi:10.1016/j.pocean.2005.02.007

    Article  Google Scholar 

  • Takata H, Kuma K, Iwade S, Isoda Y, Kuroda H, Senjyu T (2005) Comparative vertical distributions of iron in the Japan Sea, the Bering Sea, and the western North Pacific Ocean. J Geophys Res 110(7):1–10

    Google Scholar 

  • Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393(6687):774–777

    Article  Google Scholar 

  • Takeda S (2011) Iron and phytoplankton growth in the subarctic North Pacific. Aqua-BioSci Monogr 4(2):41–93. doi:10.5047/absm.2011.00402.0041

    Article  Google Scholar 

  • Taucher J, Schulz KG, Dittmar T, Sommer U, Oschlies A, Riebesell U (2012) Enhanced carbon overconsumption in response to increasing temperatures during a mesocosm experiment. Biogeosciences 9:3531–3545. doi:10.5194/bg-9-3531-2012

    Article  Google Scholar 

  • Taylor AH, Geider RJ, Gilbert FJH (1997) Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study. Mar Ecol Prog Ser 152:51–66

    Article  Google Scholar 

  • Taylor BW, Keep CF, Hall RO, Koch BJ, Tronstad LM, Flecker AS, Ulseth AJ (2007) Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J North Am Benthol Soc 26(2):167–177. doi:10.1899/0887-3593

    Article  Google Scholar 

  • Thingstad TF, Bellerby RGJ, Bratbak G, Borsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa RA, Skjoldal EF, Tanaka T, Thyrhaug R, Topper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455(7211):387–390. doi:10.1038/nature07235

    Article  Google Scholar 

  • Tomas CR (1997) Identifying Marine Phytoplankton. Academic, San Diego

    Google Scholar 

  • Tortell PD, Payne CD, Li Y, Trimborn S, Rost B, Smith WO, Riesselman C, Dunbar RB, Sedwick P, DiTullio GR (2008) CO2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35 (L04605). doi:10.1029/2007GL032583

  • Trimborn S, Wolf-Gladrow D, Richter KU, Rost B (2009) The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J Exp Mar Biol Ecol 376(1):26–36

    Article  Google Scholar 

  • Uye S-I, Nagano N, Tamaki H (1996) Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. J Oceanogr 52(6):689–703. doi:10.1007/bf02239460

    Article  Google Scholar 

  • Verity PG, Lagdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plank Res 6(5):859–868. doi:10.1093/plankt/6.5.859

    Article  Google Scholar 

  • Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992

    Article  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7(9):2915–2923. doi:10.5194/bg-7-2915-2010

    Article  Google Scholar 

  • Yamada N, Suzumura M (2010) Effects of seawater acidification on hydrolytic enzyme activities. J Oceanogr 66(2):233–241. doi:10.1007/s10872-010-0021-0

    Article  Google Scholar 

  • Yoshimura T, Nishioka J, Nakatsuka T (2010a) Iron nutritional status of the phytoplankton assemblage in the Okhotsk Sea during summer. Deep-Sea Res I 57(11):1454–1464. doi:10.1016/j.dsr.2010.08.003

    Article  Google Scholar 

  • Yoshimura T, Nishioka J, Suzuki K, Hattori H, Kiyosawa H, Watanabe YW (2010b) Impacts of elevated CO2 on organic carbon dynamics in nutrient depleted Okhotsk Sea surface waters. J Exp Mar Biol Ecol 395(1–2):191–198. doi:10.1016/j.jembe.2010.09.001

    Article  Google Scholar 

  • Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, Leakey RJG (1998) Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S. Deep-Sea Res I 45(8):1339–1355. doi:10.1016/s0967-0637(98)00015-6

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the field assistance of the captain, officers, crew, and scientists aboard the T/S “Oshoro-maru”. We thank K. Sugita and A. Tsuzuku for their help on land in preparing the experiments, A. Murayama for nutrients analysis, and A. Matsuoka for POC and PN analysis. We also thank C. Norman for his help in improving the English of the manuscript. We acknowledge the editor and two anonymous reviewers for providing valuable comments that significantly improved the manuscript. This work was conducted in the framework of the Plankton Ecosystem Response to CO2 Manipulation Study (PERCOM), and was supported by grants from CRIEPI (#060215) and Grants-in-Aid for Scientific Research (#22681004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yoshimura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PPT 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, T., Suzuki, K., Kiyosawa, H. et al. Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters. J Oceanogr 69, 601–618 (2013). https://doi.org/10.1007/s10872-013-0196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-013-0196-2

Keywords

Navigation