Skip to main content
Log in

Growth stimulation and inhibition of natural phytoplankton communities by model organic ligands in the western subarctic Pacific

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The influence of organic ligands on natural phytoplankton growth was investigated in high-nitrate low-chlorophyll (HNLC) waters and during a phytoplankton bloom induced by a mesoscale iron enrichment experiment (SEEDS II) in the western subarctic Pacific. The growth responses of the phytoplankton in the treatments with iron complexed with model ligand were compared with those with inorganic iron or a control. Desferrioxamine B and protoporphyrin IX were used as models for hydroxamate-type siderophore and tetrapyrrole-type cell breakdown ligand, respectively. In the HNLC water, iron associated with protoporphyrin IX especially stimulated smaller phytoplankton (<10 μm) growth, 1.5-fold more than did inorganic iron. Surprisingly, only the addition of protoporphyrin IX stimulated small phytoplankton growth, suggesting that these cell breakdown ligands might be more bioavailable for them. The protoporphyrin IX’s stimulatory effect on small phytoplankton was not observed during bloom decline phase. The growth of phytoplankton was inhibited in the treatment with desferrioxamine B-complexed iron, suggesting its low bioavailability for the natural phytoplankton community. Its inhibitory effects were particularly pronounced in pico-eukaryotic phytoplankton. During the iron-induced bloom, the phytoplankton’s iron-stress response gradually increased with the desferrioxamine B concentration, suggesting that the competition for iron complexation between natural ligands and desferrioxamine B affected phytoplankton growth. However, the pico-eukaryotes did seem better able to utilize the desferrioxamine B-complexed iron during the bloom-developing phase. These results indicate that the iron bioavailability for phytoplankton differs between bloom-developing and bloom-decline phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achilles KM, Church TM, Wilhelm SW et al (2003) Bioavailability of iron to Trichodesmium colonies in the western subtropical Atlantic Ocean. Limnol Oceanogr 48:2250–2255

    Article  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  Google Scholar 

  • Boye M, van den Berg CMG (2000) Iron availability and the release of iron-complexing ligands by Emiliania huxleyi. Mar Chem 70:277–287

    Article  Google Scholar 

  • Boye M, Nishioka J, Croot PL et al (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271

    Article  Google Scholar 

  • Bruland KW, Rue EL (2001) Analytical methods for the determination of concentrations and speciation of iron. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. Wiley, Chichester, pp 255–289

    Google Scholar 

  • Buck KN, Selph KE, Barbeau KA (2010) Iron-binding ligand production and copper speciation in an incubation experiment of Antarctic Peninsula shelf waters from the Bransfield Strait, Southern Ocean. Mar Chem 122:148–159

    Article  Google Scholar 

  • Chen M, Wang WX (2008) Accelerated uptake by phytoplankton of iron bound to humic acids. Aquat Biol 3:155–166

    Article  Google Scholar 

  • Chen M, Wang WX, Guo LD (2004) Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter. Glob Biogeochem Cycles 18:GB4013. doi:10.1029/2003GB002160

  • Croot PL, Johansson M (2000) Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 12:565–576

    Article  Google Scholar 

  • Croot PL, Bowie AR, Frew RD et al (2001) Retention of dissolved iron and FeII in an iron induced Southern Ocean phytoplankton bloom. Geophys Res Lett 28:3425–3428

    Article  Google Scholar 

  • DiTullio GR, Hutchins DA, Bruland KW (1993) Interaction of iron and major nutrient controls phytoplankton growth and species composition in the tropical North Pacific Ocean. Limnol Oceanogr 38:495–508

    Article  Google Scholar 

  • Eldridge ML, Trick CG, Alm MB et al (2004) Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquat Microb Ecol 35:79–91

    Article  Google Scholar 

  • Falkowski PG, Greene R, Kolber Z (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios, Oxford, pp 407–432

  • Gerringa LJA, Herman PMJ, Poortvliet TCW (1995) Comparison of the linear Van den Berg/Ružić transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Mar Chem 48:131–142

    Article  Google Scholar 

  • Hansard SP, Landing WM, Measures CI et al (2009) Dissolved iron(II) in the Pacific Ocean: measurements from the PO2 and P16N CLIVER/CO2 repeat hydrography expeditions. Deep Sea Res I 56:1117–1129

    Article  Google Scholar 

  • Harrison PJ, Boyd PW, Varela DE et al (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog Oceanogr 43:205–234

    Article  Google Scholar 

  • Hassler CS, Schoemann V (2009) Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosci Discuss 6:1677–1712

    Article  Google Scholar 

  • Hutchins DA, Witter AE, Butler A et al (1999a) Competition among marine phytoplankton for different chelated iron species. Nature 400:858–861

    Article  Google Scholar 

  • Hutchins DA, Franck VM, Brzezinski MA et al (1999b) Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnol Oceanogr 44:1009–1018

    Article  Google Scholar 

  • Hutchins DA, Hare CE, Weaver RS et al (2002) Phytoplankton iron limitation in the Humboldt current and Peru upwelling. Limnol Oceanogr 47:997–1011

    Article  Google Scholar 

  • Iwade S, Kuma K, Isoda Y et al (2006) Effect of high iron concentrations on iron uptake and growth of a coastal diatom Chaetoceros sociale. Aquat Microb Ecol 43:177–191

    Article  Google Scholar 

  • King AL, Buck KN, Barbeau KA (2012) Quasi-Lagrangian drifter studies of iron speciation and cycling off Point Conception, California. Mar Chem 128–129:1–12

    Article  Google Scholar 

  • Kondo Y, Takeda S, Nishioka J et al (2008) Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific. Geophys Res Lett 35:L12601. doi:10.1029/2008GL033354

    Article  Google Scholar 

  • Kudo I, Miyamoto M, Noiri Y et al (2000) Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol 36:1096–1102

    Article  Google Scholar 

  • Kuma K, Tanaka J, Matsunaga K et al (2000) Effect of hydroxamate ferrisiderophore complex (ferrichrome) on iron uptake and growth of a coastal marine diatom, Chaetoceros sociale. Limnol Oceanogr 45:1235–1244

    Article  Google Scholar 

  • Lis H, Shaked Y (2009) Probing the bioavailability of organically bound iron: a case study in the Synechococcus-rich waters of the Gulf of Aqaba. Aquat Microb Ecol 56:241–253

    Article  Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW et al (1996) CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  Google Scholar 

  • Mackey MD, Higgins HW, Mackey DJ et al (1997) CHEMTAX user’s manual: a program for estimating class abundances from chemical markers—application to HPLC measurements of phytoplankton pigment. In: CRISO Marine Laboratories Report. CRISO Divisions of Marine Research, Australia

  • Maldonado MT, Price NM (1999) Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep Sea Res II 46:2447–2473

    Article  Google Scholar 

  • Maldonado MT, Price NM (2000) Nitrate regulation of Fe reduction and transport by Fe-limited Thalassiosira oceanica. Limnol Oceanogr 45:814–826

    Article  Google Scholar 

  • Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298–309

    Article  Google Scholar 

  • Maldonado MT, Strzepek RF, Sander S et al (2005) Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. Glob Biogeochem Cycles 19:GB4S23. doi:10.1029/2005GB002481

  • Maldonado MT, Allen AE, Chong JS et al (2006) Copper-dependent iron transport in coastal and oceanic diatoms. Limnol Oceanogr 51:1729–1743

    Article  Google Scholar 

  • Matsunaga K, Nishioka J, Kuma K et al (1998) Riverine input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay (Japan). Water Res 32:3436–3442

    Article  Google Scholar 

  • Mawji E, Gledhill M, Milton JA et al (2008) Hydroxamine siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42:8675–8680

    Article  Google Scholar 

  • Muggli DL, Lecourt M, Harrison PJ (1996) Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar Ecol Prog Ser 132:215–227

    Article  Google Scholar 

  • Nishioka J, Ono T, Saito H et al (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. doi:10.1029/2006JC004055

    Article  Google Scholar 

  • Nishioka J, Takeda S, Kondo Y et al (2009) Changes in iron concentrations and bio-availability during an open-ocean mesoscale iron enrichment in the western subarctic Pacific, SEEDS II. Deep Sea Res II 56:2796–2809

    Article  Google Scholar 

  • Nodwell LM, Price NM (2001) Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton. Limnol Oceanogr 46:765–777

    Article  Google Scholar 

  • Obata H, Karatani H, Nakayama E (1993) Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford

    Google Scholar 

  • Rijkenberg MJA, Gerringa LJA, Carolus VE et al (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochem Cosmochim Acta 70:2790–2805

    Article  Google Scholar 

  • Roy EG, Wells ML, King DW (2008) Persistence of iron(II) in surface waters of the western subarctic Pacific. Limnol Oceanogr 53:89–98

    Article  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42:901–910

    Article  Google Scholar 

  • Saito H, Tsuda A, Nojiri Y et al (2009) Biogeochemical cycling of N and Si during the mesoscale iron-enrichment experiment in the western subarctic Pacific (SEEDS-II). Deep Sea Res II 56:2852–2862

    Article  Google Scholar 

  • Sato M, Takeda S, Furuya K (2007) Iron regeneration and organic iron(III)-binding ligand production during in situ zooplankton grazing experiment. Mar Chem 106:471–488

    Google Scholar 

  • Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872–882

    Article  Google Scholar 

  • Soria-Dengg S, Horstmann U (1995) Ferrioxamines B and E as iron sources for the marine diatom Phaeodactylum tricornutum. Mar Ecol Prog Ser 127:269–277

    Article  Google Scholar 

  • Soria-Dengg S, Reissbrodt R, Horstmann U (2001) Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: experiments with the diatom Phaeodactylum tricornutum. Mar Ecol Prog Ser 220:73–82

    Article  Google Scholar 

  • Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N,N-dimethyl-formamide. J Oceanogr 46:190–194

    Google Scholar 

  • Suzuki K, Liu H, Saino T et al (2002) East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47:1581–1594

    Article  Google Scholar 

  • Suzuki K, Saito H, Isada T et al (2009) Community structure and photosynthetic physiology of phytoplankton in the northwest subarctic Pacific during an in situ iron fertilization experiment (SEEDS-II). Deep Sea Res II 56:2733–2744

    Article  Google Scholar 

  • Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393:774–777

    Article  Google Scholar 

  • Takeda S (2011) Iron and phytoplankton growth in the subarctic North Pacific. Aqua BioSci Monogr 4:41–93

    Article  Google Scholar 

  • Tsuda A, Takeda S, Saito H et al (2003) A mesoscale iron enrichment in the western subarctic North Pacific induces a large centric diatom bloom. Science 300:958–961

    Article  Google Scholar 

  • Tsuda A, Takeda S, Saito H et al (2007) Evidence for the grazing hypothesis: grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). J Oceanogr 63:983–994

    Article  Google Scholar 

  • Tsumune D, Nishioka J, Shimamoto A et al (2009) Physical behaviors of the iron-fertilized patch in SEEDS II. Deep Sea Res II 56:2948–2957

    Article  Google Scholar 

  • Vong L, Laës A, Blain S (2007) Determination of iron-porphyrin-like complexes at nanomolar levels in seawater. Anal Chim Acta 588:237–244

    Article  Google Scholar 

  • Wang WX, Dei RCH (2004) Bioavailability of iron complexed with organic colloids to the cyanobacteria Synechococcus and Trichodesmium. Aquat Microb Ecol 33:247–259

    Article  Google Scholar 

  • Weaver RS, Kirchman DL, Hutchins DA (2003) Utilization of iron/organic ligand complexes by marine bacterioplankton. Aquat Microb Ecol 31:227–239

    Article  Google Scholar 

  • Wells ML (1999) Manipulating iron availability in nearshore waters. Limnol Oceanogr 44:1002–1008

    Article  Google Scholar 

  • Wells ML, Trick CG (2004) Controlling iron availability to phytoplankton in iron replete coastal waters. Mar Chem 86:1–13

    Article  Google Scholar 

  • Wells ML, Trick CG, Cochlan WP et al (2009) Persistence of iron limitation in the western subarctic Pacific SEEDS II mesoscale fertilization experiment. Deep Sea Res II 56:2810–2821

    Article  Google Scholar 

  • Welshmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992

    Article  Google Scholar 

  • Witter AE, Hutchins DA, Butler A et al (2000) Determination of conditional stability constants and kinetic constants for strong model Fe-binding ligands in seawater. Mar Chem 69:1–17

    Article  Google Scholar 

  • Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Captains and crews of the R.V. “Hakuho-maru” KH-03-2 and KH-04-3 cruises for their assistance on board. We express our gratitude to Drs. A. Tsuda, H. Obata, M.L. Wells, C.S. Wong, Mr. W.K. Johnson, and the other scientists who took part in the SEEDS II experiment. This research was supported by funds from the Ministry of Education, Science and Culture research (16201003, 18067006 and 20310006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Takeda, S., Nishioka, J. et al. Growth stimulation and inhibition of natural phytoplankton communities by model organic ligands in the western subarctic Pacific. J Oceanogr 69, 97–115 (2013). https://doi.org/10.1007/s10872-012-0160-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-012-0160-6

Keywords

Navigation