Skip to main content

Advertisement

Log in

Sub-Lethal Effects of Elevated Concentration of CO2 on Planktonic Copepods and Sea Urchins

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod, Acartia steueri, and on the fertilization rate and larval morphology of sea urchin embryos, Hemicentrotus pulcherrimus and Echinometra mathaei. Under conditions of +10,000 ppm CO2 in seawater (pH 6.8), the egg production rates of copepods decreased significantly. The survival rates of adult copepods were not affected when reared under increased CO2 for 8 days, however longer exposure times could have revealed toxic effects of elevated CO2 concentrations. The fertilization rate of sea urchin eggs of both species decreased with increasing CO2 concentration. Furthermore, the size of pluteus larvae decreased with increasing CO2 concentration and malformed skeletogenesis was observed in both larvae. This suggests that calcification is affected by elevated CO2 in the seawater. From these results, we conclude that increased CO2 concentration in seawater will chronically affect several marine organisms and we discuss the effects of increased CO2 on the marine carbon cycle and marine ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. E., J. A. Caulfield, H. J. Herzog and D. I. Auerbach (1997): Impacts of reduced pH from ocean disposal: sensi-tivity of zooplankton mortality to model parameters. Waste Manage., 17, 375–380.

    Article  Google Scholar 

  • Arrigo, K. R., D. H. Robinson, D. L. Worthen, R. B. Dunbar, G. R. DiTullio, M. VanWoert and M. P. Lizotte (1999): Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science, 283, 365–367.

    Article  Google Scholar 

  • Austen, M. C., S. Widdicombe and N. Villano-Pitacco (1998): Effects of biological disturbances on diversity and struc-ture of meiobenthic nematode communities. Mar. Ecol. Prog. Ser., 174, 233–246.

    Article  Google Scholar 

  • Bamber, R. N. (1987): The effects of acidic seawater on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). J. Exp. Mar. Biol. Ecol., 108, 241–260.

    Article  Google Scholar 

  • Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway and R. J. Francey (2000): Global carbon sinks and their variability inferred from atmospheric O2 and ??13 C. Science, 287, 2467–2470.

    Article  Google Scholar 

  • Bazzaz, F. A. (1990): The response of natural ecosystems to the rising global carbon dioxide levels. Ann. Rev. Ecol. Syst., 21, 167–196.

    Article  Google Scholar 

  • Benedetti-Cecchi, L. (2000): Predicting direct and indirect in-teractions during succession in a mid-littoral rocky shore assemblage. Ecological Monographs., 70, 45–72.

    Article  Google Scholar 

  • Broecker, W. S. (1997): Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO 2 upset the current balance? Science, 278, 1582–1588.

    Article  Google Scholar 

  • Caulfield, J. A., E. E. Adams, D. I. Auerbach and H. J. Herzog (1997): Impacts of ocean disposal on marine life: II. Probabilistic plume exposure model used with a time-vary-ing dose-response analysis. Environ. Model Assess., 2, 345–353.

    Article  Google Scholar 

  • Fowler, S. W. and G. A. Knauer (1986): Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16, 147–194.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine and R. W. Buddemeier (1998): Effect of calcium carbonate saturation of seawater in coral calcification. Glob. Planet. Change, 18, 37–46.

    Article  Google Scholar 

  • Grice, G. D., P. H. Wiebe and E. Hoagland (1973): Acid-iron waste as a factor affecting the distribution and abundance of zooplankton in the New York Bight. I. Laboratory stud-ies on the effects of acid waste on copepods. Est. Coast. Mar. Sci., 1, 45–50.

    Article  Google Scholar 

  • Heisler, N. (1993): Acid-base regulation. p. 343–378. In The Physiology of Fishes, ed. by D. H. Evans, CRC Press, Boca Raton.

    Google Scholar 

  • Herzog, H. J., E. E. Adams, D. Auerbach and J. Caulfield (1996): Environmental impacts of ocean disposal of CO 2. Energy Convers. Manage.,37(6–8), 999–1005.

    Article  Google Scholar 

  • Hochachka, P. W. and G. N. Somero (2002): Biochemical Adaptation: Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, 446 pp.

    Google Scholar 

  • Houghton, J. T., B. A. Callander and S. K. Varney (1992): Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, New York.

    Google Scholar 

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linder and D. Xiaosu (2001): Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.

    Google Scholar 

  • Huesemann, M. H., A. D. Skillman and E. A. Crecelius (2002): The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Poll. Bull., 44, 142–148.

    Article  Google Scholar 

  • Keeling, C. D. and T. P Whorf (1994): Atmospheric CO 2 records from sites in the SIO air sampling network. p. 16–26. In Trends’ 93: A Compendium of Data on Global Change, ed. by T. A. Boden, D. P. Kaiser, R. J. Sepanski and F. W. Stoss, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn.

    Google Scholar 

  • Keeling, R. F., S. C. Piper and M. Heimann (1996): Global and hemispheric CO 2 sink deduced from changes in atmospheric O2 concentration. Nature, 381, 218–221.

    Article  Google Scholar 

  • Kikkawa, T., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO 2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.

    Article  Google Scholar 

  • Knutzen, J. (1981): Effects of decreased pH on marine organisms. Mar. Pollut. Bull., 12, 25–29.

    Article  Google Scholar 

  • Kurihara, H. and Y. Shirayama (2004): Effects of increased at-mospheric CO 2 on sea urchin early development. Mar. Ecol. Prog. Ser. (in press).

  • Kurihara, H., S. Shimode and Y. Shirayama (2004): Effects of raised CO2 concentration on the egg production rate and early development of two species of marine copepods [Acartia steueri and Acartia erythrae. Mar. Pollut. Bull. (in press).

  • Kuwatani, Y. and T. Nishii (1969): Effects of pH of culture water on the growth of the Japanese pearl oyster. Bull. Jap. Soc. Fish. Oceanogr., 35(4), 342–350.

    Article  Google Scholar 

  • Legendre, L. and R. B. Rivkin (2002): Pelagic food webs: Re-sponses to environmental processes and effects on the environment. Ecol. Res., 17, 143–149.

    Article  Google Scholar 

  • Levinton, J. S. (1995): Marine Biology: Function, Biodiversity, Ecology. Oxford University Press, New York, 420 pp.

    Google Scholar 

  • Liro, C. R., E. E. Adams and H. J. Herzog (1992): Modeling the release of CO2 in the deep ocean. Energy Convers. Man-age., 33, 667–674.

    Article  Google Scholar 

  • Marchetti, C. (1977): On geoengineering and the CO2 prob-lem. Clim. Chang., 1, 59–68.

    Article  Google Scholar 

  • Morgan, I. J., D. G. McDonald and C. M. Wood (2001): The cost of living for freshwater fish in a warmer, more pol-luted world. Global Change Biol., 7, 345–355.

    Article  Google Scholar 

  • Nybakken, J. W. (2001): Deep sea biology. p. 133–178. In. Marine Biology: An Ecological Approach, 5th ed., Benjamin Cummings, San Francisco.

    Google Scholar 

  • Ohsumi, T. (1995): CO2 disposal options in the deep sea. Mar. Technol. Soc. J., 29(3), 58–66.

    Google Scholar 

  • Paine, R. T. (1966): Food web complexity and species diversity. Amer. Nat., 100, 65–75.

    Article  Google Scholar 

  • Paine, R. T. (1974): Intertidal community structure: experimen-tal studies on the relationship between a dominant competi-tor and its principal predator. Oecologia, 15, 93–120.

    Article  Google Scholar 

  • Parmesan, C. and G. Yohe (2003): A globally coherent finger-print of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  Google Scholar 

  • Parson, E. A. and D. W. Keith (1998): Fossil fuel without CO2 emissions. Science, 282, 1053–1054.

    Article  Google Scholar 

  • Rhoads, D. C. and D. K. Young (1970): The influence of de-posit feeding organisms on sediment stability and commu-nity trophic structure. J. Mar. Res., 28(2), 150–178.

    Google Scholar 

  • Riebesell, U., D. A. Wolf-Gladrow and V. Smetacek (1993): Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.

    Article  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel (2000): Reduced calcification of ma-rine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.

    Article  Google Scholar 

  • Rivkin, R. B. and L. Legendre (2002): Roles of food web and heterotrophic microbial processes in upper ocean biochem-istry: Global patterns and processes. Ecol. Res., 17, 151–159.

    Article  Google Scholar 

  • Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds (2003): Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.

    Article  Google Scholar 

  • Rose, D. C., G. W. Williams, T. A. Hollister and P. R. Parrish (1977): Method for determining acute toxicity of an acid waste and limiting permissible concentration at boundaries of an ocean mixing zone. Environ. Sci. Technol., 11(4), 367–371.

    Article  Google Scholar 

  • Sarmiento, J. L., T. M. Hughes, R. J. Stouffer and S. Manabe (1998): Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245–248.

    Article  Google Scholar 

  • Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. J. Murnane and J. C. Orr (2000): Sea-air CO2 fluxes and carbon transport: A comparison of three ocean general cir-culation models. Global Biogeochem. Cycles, 14(4), 1267–1281.

    Article  Google Scholar 

  • Sebens, K. (1985): The ecology of the rocky subtidal zone. Amer. Sci., 73, 548–557.

    Google Scholar 

  • Sebens, K. (1986): Spatial relationships among encrusting ma-rine organisms in the New England subtidal zone. Ecol. Monogr., 56(1), 73–96.

    Article  Google Scholar 

  • Shirayama, Y. (1997): Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage., 17(5/6), 381–384.

    Google Scholar 

  • Takahashi, T., R. A. Feely, R. F. Weiss, R. H. Wanninkhof, D. W. Chipan, S. C. Sutherland and T. T. Takahashi (1997): Global air-sea flux of CO 2: An estimate based on measure-ments of sea-air pCO 2 difference. Proc. Natl. Acad. Sci. USA, 94, 8292–8299.

    Article  Google Scholar 

  • Tsuchiya, M. Y. and Y. Kurihara (1981): Effect of feeding be-haviour of macrobenthos on changes in environmental con-ditions of intertidal flats. J. Exp. Mar. Biol. Ecol., 44, 85–94.

    Article  Google Scholar 

  • Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: Analy-sis of relative strengths and efficiencies in ocean-driven atmospheric CO 2 changes. In The Carbon Cycle and At-mospheric CO 2: Natural Variations Archean to Present, ed. by E. T. Sundquist and W. S. Broecker, Geophys. Monogr. Ser., 32, p. 99–110, AGU, Washington, D.C.

    Google Scholar 

  • Watanabe, Y., H. Ishida, A. Yamaguchi and J. Ishizaka (2001): III-5 Effects of high concentration of CO 2 on deep-sea plankton. In CO 2 Ocean Sequestration and Its Biological Impacts, Bull. Jap. Soc. Scient. Fish., 67(4), p. 764–765 (in Japanese).

    Article  Google Scholar 

  • Wigley, T. M. L., R. Richels and J. A. Edmonds (1996): Eco-nomic and environmental choices in the stabilization of atmospheric CO 2 concentrations. Nature, 379, 240–243.

    Article  Google Scholar 

  • Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt and J. Bijma (1999): Direct effects of CO 2 concentration on growth and isotopic composition of marine plankton. Tellus, 51B, 461–476.

    Article  Google Scholar 

  • Yamada, Y. and T. Ikeda (1999): Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol., 46(1), 62–67.

    Google Scholar 

  • Zhang, X. and H. G. Dam (1997): Downward export of carbon by diel migrant mesozooplankton in the central equatorial Pacific. Deep-Sea Res. II., 44, 2191–2202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, H., Shimode, S. & Shirayama, Y. Sub-Lethal Effects of Elevated Concentration of CO2 on Planktonic Copepods and Sea Urchins. Journal of Oceanography 60, 743–750 (2004). https://doi.org/10.1007/s10872-004-5766-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-004-5766-x

Navigation