Skip to main content
Log in

Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Here, we compare structures determined by X-ray diffraction and subsequent Hirshfeld surface analysis to identify and understand the non-covalent interactions within the lattices of chromone, 6-methylchromone, 6-methoxychromone, 6-fluorochromone, and 6-chlorochromone with reported 6-bromochromone. In chromone, H-bonds and CH–л interactions predominate. H-bonds and aryl-stacking interactions are distinct in 6-methylchromone and 6-methoxychromone. The 6-fluorochromone, showed two types of H-bonds with O···H bonds having a greater contribution than F···H. In contrast, 6-chlorochromone and 6-bromochromone, the halogen contributes the larger percentage of stabilizing H-bonding with Cl···H and Br···H predominating over the O···H bonds. Compound 1 crystallizes in the monoclinic space group P21 /n with a = 8.1546(8) Å, b = 7.8364(7) Å, c = 11.1424(11) Å, β = 108.506(2)° and Z = 4. Compound 2 crystallizes in the triclinic space group P-1 with a = 7.0461(3) Å, b = 10.2108(5) Å, c = 10.7083(5) Å, α = 89.884(2)°, β = 77.679(2)°, γ = 87.367(2)° and Z = 4. Compound 3 crystallizes in the monoclinic space group P21/n with a = 8.1923(4) Å, b = 7.0431(3) Å, c = 15.3943(8) Å, β = 92.819(2)° and Z = 4. Compound 4 crystallizes in the triclinic space group P1 with a = 3.7059(2) Å, b = 6.1265(4) Å, c = 7.6161(5) Å, α = 84.085(3)°, β = 87.070(3)°, γ = 83.390(3)° and Z = 1. Compound 5 crystallizes in the monoclinic space group P2 1 with a = 3.8220(2) Å, b = 5.6985(2) Å, c = 16.9107(7) Å, β = 95.8256(18)° and Z = 2.

Graphical Abstract

The effect of substituents at the 6-position on chromone on their crystal structures using Hirshfeld surface and fingerprint analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Desiraju GR (2013) J Am Chem Soc 135(27):9952–9967

    Article  CAS  Google Scholar 

  2. Tiekink ERT (2012) Crystal engineering. Supramolecular chemistry. Wiley, New York

    Google Scholar 

  3. Aakeroy CB, Champness NR, Janiak C (2010) CrystEngComm 12(1):22–43

    Article  CAS  Google Scholar 

  4. Desiraju GR (2007) Angew Chem Int Ed 46(44):8342–8356

    Article  CAS  Google Scholar 

  5. Braga D, Brammer L, Champness NR (2005) CrystEngComm 7(1):1–19

    Article  CAS  Google Scholar 

  6. Hollingsworth MD (2002) Science 295(5564):2410–2413

    CAS  Google Scholar 

  7. Braga D, Desiraju GR, Miller JS, Orpen AG, Price SL (2002) CrystEngComm 4(83):500–509

    Article  CAS  Google Scholar 

  8. Stadler A-M, Lehn J-MP (2014) J Am Chem Soc 136(9):3400–3409

    Article  CAS  Google Scholar 

  9. Dolain C, Maurizot V, Huc I (2003) Angew Chem Int Ed 42(24):2738–2740

    Article  CAS  Google Scholar 

  10. Kay ER, Leigh DA, Zerbetto F (2007) Angew Chem Int Ed 46(1–2):72–191

    CAS  Google Scholar 

  11. Lehn JM (2006) Molecular and supramolecular devices. Supramolecular chemistry. Wiley, New York, pp 89–138

    Chapter  Google Scholar 

  12. Tian J, Thallapally PK, McGrail BP (2012) Gas storage and separation in supramolecular materials. Supramolecular chemistry. Wiley, New York

    Google Scholar 

  13. Makal TA, Li J-R, Lu W, Zhou H-C (2012) Chem Soc Rev 41(23):7761–7779

    Article  CAS  Google Scholar 

  14. Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Chem Soc Rev 43(16):6011–6061

    Article  CAS  Google Scholar 

  15. Wu C-D (2011) Crystal engineering of metal-organic frameworks for heterogeneous catalysis. Selective nanocatalysts and nanoscience. Wiley, New York, pp 271–298

    Chapter  Google Scholar 

  16. Aakeröy CB, Beatty AM (2001) Aust J Chem 54(7):409–421

    Article  Google Scholar 

  17. Desiraju GR (1989) Crystal engineering: the design of organic solids, vol 54. Elsevier, Amsterdam

    Google Scholar 

  18. Verpoorte R, Memelink J (2002) Curr Opin Biotechnol 13(2):181–187

    Article  CAS  Google Scholar 

  19. Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Eur J Med Chem 78:340–374

    Article  CAS  Google Scholar 

  20. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chem Rev 114(9):4960–4992

    Article  CAS  Google Scholar 

  21. Ishar MPS, Singh G, Singh S, Sreenivasan KK, Singh G (2006) Bioorg Med Chem Lett 16(5):1366–1370

    Article  CAS  Google Scholar 

  22. Sakamoto M, Yagishita F, Kanehiro M, Kasashima Y, Mino T, Fujita T (2010) Org Lett 12(20):4435–4437

    Article  CAS  Google Scholar 

  23. Sakamoto M, Kanehiro M, Mino T, Fujita T (2009) Chem Commun 17:2379–2380

    Article  Google Scholar 

  24. Hanifin JW, Cohen E (1969) J Am Chem Soc 91(16):4494–4499

    Article  CAS  Google Scholar 

  25. Hanifin JW, Cohen E (1966) Tetrahedron Lett 7(44):5421–5426

    Article  Google Scholar 

  26. Salpage SR, Donevant LS, Smith MD, Bick A, Shimizu LS (2016) J Photochem Photobiol A 315:14–24

    Article  CAS  Google Scholar 

  27. Schmidt GMJ (1971) Pure Appl Chem 27:647–678

    Article  CAS  Google Scholar 

  28. Cohen MD, Schmidt GMJ, Sonntag FI (1964) J Chem Soc 384:2000–2013

    Article  Google Scholar 

  29. Cohen MD, Schmidt GMJ (1964) J Chem Soc 383:1996–2000

    Article  Google Scholar 

  30. Spackman MA, McKinnon JJ, Jayatilaka D (2008) CrystEngComm 10(4):377–388

    CAS  Google Scholar 

  31. Parkin A, Barr G, Dong W, Gilmore CJ, Jayatilaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) CrystEngComm 9(8):648–652

    Article  CAS  Google Scholar 

  32. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3814–3816

    Article  Google Scholar 

  33. Spackman MA, McKinnon JJ (2002) CrystEngComm 4(66):378–392

    Article  CAS  Google Scholar 

  34. McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem Eur J 4(11):2136–2141

    Article  CAS  Google Scholar 

  35. Spackman MA, Jayatilaka D (2009) CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  36. Staples RJ, Lea W (2005) New Cryst Struct 220(3):371–372

    CAS  Google Scholar 

  37. SMART Version 5.631, SAINT+ Version 6.45a (2003) Bruker Analytical X-ray Systems, Inc., Madison

  38. Sheldrick G (2008) Acta Crystallogr Sect A 64(1):112–122

    Article  CAS  Google Scholar 

  39. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  40. McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr Sec t B 60(6):627–668

    Article  Google Scholar 

  41. Wells PR (2007) Group electronegativities. Progress in physical organic chemistry. Wiley, New York, pp 111–145

    Google Scholar 

  42. Seth SK, Sarkar D, Kar T (2011) CrystEngComm 13(14):4528–4535

    Article  CAS  Google Scholar 

  43. Batsanov AS, Howard JAK, Albesa-Jové D, Collings JC, Liu Z, Mkhalid IAI, Thibault M-H, Marder TB (2012) Cryst Growth Des 12(6):2794–2802

    Article  CAS  Google Scholar 

  44. Ling I, Alias Y, Sobolev AN, Raston CL (2010) CrystEngComm 12(12):4321–4327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation CHE-1305136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Shimizu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salpage, S.R., Smith, M.D. & Shimizu, L.S. Crystal Structures and Hirshfeld Surface Analyses of 6-Substituted Chromones. J Chem Crystallogr 46, 170–180 (2016). https://doi.org/10.1007/s10870-016-0642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0642-2

Keywords

Navigation