Skip to main content
Log in

Electronic Structure of Chromium(III) Acetylacetonate Sulfenyl Chloride and Its γ-Vinyltrimethylsilane-Substituted Derivatives according to XPS and DFT Data

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of chromium(III) acetylacetonate sulfenyl chloride and its derivatives with one, two, and three vinyltrimethylsilane substituents has been studied by X-ray photoelectron spectroscopy and density functional theory. Experimental data are consistent with calculated effective charges when a basis set is augmented with polarization functions. Considering the density of states and ionization cross-sections makes it possible to interpret the XPS valence band spectra. The calculated one-electron states in the valence band of model compounds correlate with the positions of band maxima for all compounds. The possibility of determining the number of substituents in γ-positions by the loss of chlorine atoms has been established. The results are of interest in studying the structure of dendrimers and polymers based on siloxane compounds and metal complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Sanchez, B. Julian, P. Belleville, and M. Popall, J. Mater. Chem. 15, 3559 (2005).

    Article  CAS  Google Scholar 

  2. K. Pielichowski, J. Njuguna, B. Janowski, and J. Pielichowski, Adv. Polym. Sci. 201, 225 (2006).

    Article  CAS  Google Scholar 

  3. D. Neumann, M. Fisher, L. Tran, and J. G. Matisons, J. Am. Chem. Soc. 124, 13998 (2002).

    Article  CAS  Google Scholar 

  4. C. Hartmann-Thompson, (Ed.). Applications of Polyhedral OligomericSilsesquio-xanes. Advances in Silicon Science, vol. 3 (2011).

    Google Scholar 

  5. S. Lücke and K. Stoppek-Langner, Appl. Surf. Sci. 144145, 713 (1999).

    Article  Google Scholar 

  6. R. M. Laine, S. Sulaiman, and C. Brick, J. Am. Chem. Soc. 132, 3708 (2010). https://doi.org/10.1007/s10947-010-0133-9

    Article  CAS  PubMed  Google Scholar 

  7. V. I. Vovna, I. S. Os’mushko, V. V. Korochentsev, et al., J. Struct. Chem. 51, 875 (2010). https://doi.org/10.1007/s10947-010-0133-9

    Article  CAS  Google Scholar 

  8. I. S. Os’mushko, V. I. Vovna, V. V. Korochentsev, et al., J. Struct. Chem. 52, 145 (2011). https://doi.org/10.1134/S0022476611070195

    Article  CAS  Google Scholar 

  9. I. S. Os’mushko, V. I. Vovna, V. A. Yashin, et al., J. Struct. Chem. 54, 515 (2013). https://doi.org/10.1134/S0022476613030062

    Article  CAS  Google Scholar 

  10. I. V. Svistunova, N. P. Shapkin, G. O. Tretyakova, and D. V. Saigak, Phosphorus, Sulfur Silicon Relat. Elem. 190, 1632 (2015).

    Article  CAS  Google Scholar 

  11. N. P. Shapkin, L. B. Leont’ev, A. L. Leont’ev, et al., Russ. J. Appl. Chem. 85, 1509 (2012).

    Article  CAS  Google Scholar 

  12. N. P. Shapkin, M. I. Balanov, V. I. Razov, et al., J. Mol. Struct. 1155, 424 (2018). https://doi.org/10.1016/j.molstruc.2017.11.119

    Article  CAS  Google Scholar 

  13. N. P. Shapkin, L. B. Leont’ev, V. N. Makarov, et al., Russ. J. Appl. Chem. 87, 1810 (2014).

    Article  CAS  Google Scholar 

  14. V. S. Gusarov, A. M. Cheplakova, D. G. Samsonenko, et al., Russ. J. Inorg. Chem. 66, 1374 (2021). https://doi.org/10.1134/S0036023621090035

    Article  CAS  Google Scholar 

  15. V. S. Sergienko, T. V. Koksharova, A. V. Churakov, et al., Russ. J. Inorg. Chem. 66, 1492 (2021). https://doi.org/10.1134/S0036023621100156

    Article  CAS  Google Scholar 

  16. V. A. Isaeva, G. A. Gamov, and V. A. Sharnin, Russ. J. Inorg. Chem. 66, 1696 (2021). https://doi.org/10.1134/S0036023621110097

    Article  CAS  Google Scholar 

  17. T. M. Ivanova, M. A. Kiskin, A. A. Sidorov, et al., Russ. J. Coord. Chem. 47, 702 (2021). https://doi.org/10.1134/S1070328421100031

    Article  CAS  Google Scholar 

  18. I. S. Osmushko, V. I. Vovna, S. A. Tikhonov, et al., Int. J. Quantum Chem. 116, 325 (2016).

  19. CasaXPS Version 2.3.12, Casa Software Ltd, 1999–2006.

  20. T. A. Karlsson, Photoelectron and Auger Spectroscopy (Mashinostroenie, Leningrad, 1981) [in Russian].

    Google Scholar 

  21. A. A. Granovsky, Firefly. version 8.2.0. http://classic.chem.msu.su/gran/gamess/index.html.

  22. V. I. Nefedov, X-ray Electron Spectroscopy of Chemical Compounds (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  23. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, et al., NIST X-ray Photoelectron Spectroscopy Database, 20, 2012. Version 4.1. https://srdata.nist.gov/xps/

  24. Yu. V. Chizhov, Doctoral Sci. (Phys.-Math.) Dissertation, Ufa, 2009. http://www.issp.ac.ru/ebooks/disser/Chizhov_Yu_V.pdf.

  25. V. I. Vovna, V. V. Korochentsev, and A. A. Dotsenko, Russ. J. Coord. Chem. 38, 36 (2012).

    Article  CAS  Google Scholar 

  26. V. I. Vovna, Electronic Structure of Organic Compounds (Mir, Moscow, 1991) [in Russian].

Download references

Funding

This work was supported through grant no. 075-15-2021-607 (in the form of a subsidy aimed at state support of scientific research conducted under the guidance of leading scientists of Russian higher educational institutions, scientific foundations, and state research centers of the Russian Federation) and a grant from the Ministry of Science and Education of the Russian Federation no. 0657-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Os’mushko.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashin, V.A., Os’mushko, I.S., Vovna, V.I. et al. Electronic Structure of Chromium(III) Acetylacetonate Sulfenyl Chloride and Its γ-Vinyltrimethylsilane-Substituted Derivatives according to XPS and DFT Data. Russ. J. Inorg. Chem. 67, 1433–1441 (2022). https://doi.org/10.1134/S0036023622090200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622090200

Keywords:

Navigation