Skip to main content
Log in

Nonisomorphous X-Ray Structures of Tritylnitrile and Tritylisonitrile

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structures of a related series of isosteric compounds, namely tritylnitrile 1, tritylisonitrile 2, and a solid solution of tritylnitrile/tritylisonitrile 3 have been determined by single crystal X-ray diffraction. The bond lengths, angles, and intermolecular interactions do not deviate significantly from previously reported nitriles and isonitriles. These isosteric compounds pack in nonisomorphous but very similar structures. Subtle differences between the packing of 1 and 2 are detailed. The solid solution of tritylnitrile/tritylisonitrile 3 is isomorphous with the structure of tritylnitrile 1. This solid solution possesses substitutional disorder involving the nitrile and isonitrile groups (Z′ = 2, nitrile/isonitrile occupancy ratios 53.7/46.3 and 54.6/45.4). The structure of tritylisonitrile 2 possesses positional disorder over two sites (Z′ = 2, occupancy ratio of 93.1/6.9). A comparison with previously reported nearly isosteric structures reveals that other chemically dissimilar compounds crystallize in each of the two molecular packing arrangements described in this report. Structure 1: monoclinic, P21/c, a = 18.049(11) Å, b = 9.583(6) Å, c = 17.824(11) Å, β = 108.680(10)°, V = 2921(3) Å3, Z = 8, R 1 = 0.0467, wR 2 = 0.1491. Structure 2: triclinic, P \( \overline{1} \), a = 9.5877(13) Å, b = 10.7479(14) Å, c = 14.809(2) Å, α = 88.457(2)°, β = 80.303(2)°, γ = 77.128(2)°, V = 1466.4(3) Å3, Z = 4, R 1 = 0.0423, wR 2 = 0.1151. Structure 3: monoclinic, P21/c, a = 18.03464(15) Å, b = 9.5739(8) Å, c = 17.8251(11) Å, β = 108.5920(10)°, V = 2917.4(4) Å3, Z = 8, R 1 = 0.0587, wR 2 = 0.1734.

Graphical Abstract

The crystal structures of the isosteric pair tritylnitrile 1 and tritylisonitrile 2 are nonisomorphous while the structure of a solid solution of tritylnitrile/tritylisonitrile 3 is isomorphous with the structure of tritylnitrile 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Isomorphous nitrile/isonitrile pairs with CCDC refcodes: 2,4,6-trimethylphenyl isocyanide (MOPJUW) [23], 2,4,6-trimethylcyanobenzene (MESITN) [24], p-decylphenyl isocyanide and p-decylphenylnitrile (EVOSEN and EVOSIR) [16], p-isocyanoaniline (LEGROE) [20], p-cyanoaniline (BERTOH) [25], 4-iodophenylisonitrile (IBZICN) [26], 4-iodobenzonitrile (IOBNIT) [27], pentafluorophenylisonitrile (KUMXOF) [28], pentafluorobenzonitrile (HUFVEJ) [29], trifluorovinylisocyanide and trifluoroacrylonitrile (MELFOY and MELFIS) [21].

  2. Nonisomorphous nitrile/isonitrile pairs with CCDC refcodes: 2,4,6-tribromobenzonisonitrile (TBZINT) [19], 2,4,6-tribromobenzonitrile (BRBZNT) [30], 4-bromobenzoisonitrile (BBIZCN) [26], 4-bromobenzonitrile (BRBNIT) [31], 2,6-xylylisocyanide (EBONAK) [32], 2,6-dimethylbenzonitrile (JIBDON) [33], p-nitrophenylisocyanide (EVOSAJ) [34], p-nitrobenzonitrile (PNBZNT) [35], 2,4,6-trichlorophenylisonitrile and 2,4,6-trichlorobenzonitrile (FUGVAE and CLBECN03) [18].

References

  1. Khatri HN, Walborsky HM (1978) J Org Chem 43:734

    Article  CAS  Google Scholar 

  2. Periasamy MP, Walborsky HM (1974) J Org Chem 39:611

    Article  CAS  Google Scholar 

  3. Suginome M, Ito Y (2004) Sci Synth 19:445

    Google Scholar 

  4. Lengyel I, Cesare V, Adam I, Taldone T (2002) Heterocycles 57:73

    Article  CAS  Google Scholar 

  5. Meier M, Mueller B, Ruechardt C (1987) J Org Chem 52:648

    Article  CAS  Google Scholar 

  6. Walborsky HM, Niznik GE, Periasamy MP (1971) Tetrahedron Lett 52:49658

    Google Scholar 

  7. Ito Y, Inubushi Y, Zenbayashi M, Tomita S, Saegusa Y (1973) J Am Chem Soc 95:4447

    Article  CAS  Google Scholar 

  8. Pike RD, Carpenter GB (1993) Organomets 12:1416

    Article  CAS  Google Scholar 

  9. Walker PJC, Mawby RJ (1971) J Chem Soc A 19:3006

    Article  Google Scholar 

  10. Heldt WZ (1961) J Inorg Nuc Chem 22:305

    Article  CAS  Google Scholar 

  11. As indicated by a recent search of the Cambridge Structural Database (v 5.32, updates including Nov 2011)

  12. Weith W (1873) Ber Dtsch Chem Ges 6:210

    Article  Google Scholar 

  13. Austad T, Songstad J (1972) Acta Chem Scand 26:3141

    Article  CAS  Google Scholar 

  14. Austad T, Songstad J, Stangeland LJ (1971) Acta Chem Scand 25:2327

    Article  CAS  Google Scholar 

  15. Meier M, Ruchardt C (1986) Chimia 40:238

    CAS  Google Scholar 

  16. Britton D, Sowa JR, Mann KR (2004) Acta Crystallogr C 60:o418

    Article  Google Scholar 

  17. Britton D (2002) Acta Crystallogr E 58:o637

    Article  Google Scholar 

  18. Pink M, Britton D, Noland WE, Pinnow MJ (2000) Acta Crystallogr C 56:1271

    Article  Google Scholar 

  19. Carter VB, Britton D, Gleason WB (1977) Cryst Struct Commun 6:543

    CAS  Google Scholar 

  20. Britton D (1993) J Cryst Spectrosc Res 23:689

    Article  CAS  Google Scholar 

  21. Buschmann J, Kleinhenz S, Lentz D, Luger P, Madappat KV, Preugschat D, Thrasher JS (2000) Inorg Chem 39:2807

    Article  CAS  Google Scholar 

  22. Allen FH, Kennard O, Taylor R (1983) Acc Chem Res 16:146

    Article  CAS  Google Scholar 

  23. Fernandes MA, Layh M, Omondi B (2002) Acta Crystallogr C 58:o384

    Article  Google Scholar 

  24. Britton D (1979) Cryst Struct Commun 8:667

    CAS  Google Scholar 

  25. Merlino S, Sartori F (1982) Acta Crystallogr B 38:1476

    Article  Google Scholar 

  26. Britton D, Konnert J, Lam S (1978) Cryst Struct Commun 7:445

    CAS  Google Scholar 

  27. Schlemper EO, Britton D (1965) Acta Crystallogr 18:419

    Article  CAS  Google Scholar 

  28. Lentz D, Preugschat D (1993) Acta Crystallogr C 49:52

    Article  Google Scholar 

  29. Bond AD, Davies JE, Griffiths J, Rawson JM (2001) Acta Crystallogr E 57:o231

    Article  Google Scholar 

  30. Carter VB, Britton D (1972) Acta Crystallogr B 28:945

    Article  CAS  Google Scholar 

  31. Britton D, Konnert J, Lam S (1977) Cryst Struct Commun 6:45

    CAS  Google Scholar 

  32. Mathieson T, Schier A, Schmidbaur H (2001) J Chem Soc Dalton Trans 1196

  33. Drew MGB, Willey GR (1991) Acta Crystallogr C 47:221

    Article  Google Scholar 

  34. Zeller M, Hunter AD (2004) Acta Crystallogr C 60:o415

    Article  Google Scholar 

  35. Higashi T, Osaki K (1977) Acta Crystallogr B 33:2337

    Article  Google Scholar 

  36. Ugi I, Meyer R, McKusick BC, Webster OW (1961) Org Synth 41:101

    CAS  Google Scholar 

  37. Bruker (2003) SAINT and SMART. Bruker AXS Inc., Madison

  38. Blessing R (1995) Acta Cryst A 51:33

    Article  Google Scholar 

  39. SHELXL97 Sheldrick GM (2008) Acta Cryst A 64:112

  40. Hirshfeld FL (1976) Acta Crystallogr A 32:239

    Article  Google Scholar 

  41. LePage Y (1987) J Appl Crystallogr 20:264

    Article  CAS  Google Scholar 

  42. Spek AL (1988) J Appl Crystallogr 21:578

    Article  Google Scholar 

  43. Spek AL (1990) Acta Crystallogr A 46:C34

    Google Scholar 

  44. Spek AL (1998) A multipurpose crystallographic tool. Utrecht University, Utrecht

    Google Scholar 

  45. Lee S, Mallik AB, Fredrickson DC (2004) Cryst Growth Des 4:279

    Article  CAS  Google Scholar 

  46. Arkin CR, Cowans B, Kahr B (1996) Chem Mater 8:1500

    Article  CAS  Google Scholar 

  47. Kahr B, Carter RL (1992) Mol Cryst Liq Cryst Sci Technol SectA 219:79

    Article  CAS  Google Scholar 

  48. Dunand A, Gerdil R (1984) Acta Crystallogr B 40:9

    Article  Google Scholar 

  49. Gerdil R, Dunand A (1975) Acta Crystallogr B 31:936

    Article  Google Scholar 

  50. Ziemer B, Rabis A, Steinberger H-U (2000) Acta Crystallogr C 56:e58

    Article  Google Scholar 

  51. Jones PG, Kienitz C, Thone C (1994) Z Kristallogr 209:80

    Article  CAS  Google Scholar 

  52. Schulz T, Meindl K, Leusser D, Stern D, Graf J, Michaelsen C, Ruf M, Sheldrick GM, Stalke D (2009) J Appl Crystallogr 42:885

    Article  CAS  Google Scholar 

  53. Codding PW, Kerr KA (1979) Acta Crystallogr B 35:1261

    Article  Google Scholar 

  54. Chekhlov AN (2002) Zh Strukt Khim 43:391

    Google Scholar 

  55. Schmidbaur H, Jeong J, Schier A, Graf W, Wilkinson DL, Muller G (1989) N J Chem 13:341

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a 3M Faculty/Student Collaborative Research Grant through the Center of Excellence for Women, Science and Technology, St. Catherine University. The authors thank Dr. Victor G. Young Jr., Director of the X-ray Crystallographic Laboratory of the Department of Chemistry, University of Minnesota, and Professor Doyle Britton of the Department of Chemistry, University of Minnesota for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daron E. Janzen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skodje, K.M., Hinkle, L.M., Miranda, M.O. et al. Nonisomorphous X-Ray Structures of Tritylnitrile and Tritylisonitrile. J Chem Crystallogr 42, 972–980 (2012). https://doi.org/10.1007/s10870-012-0345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0345-2

Keywords

Navigation