Skip to main content

Advertisement

Log in

Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pang, X.F., Feng, Y.J., Luo, Y.H.: Influences of quantum and disorder effects on solitons excited in protein molecules in improved model. Commun. Theor. Phys. (Beijing, China) 43(1), 367–376 (2005)

    ADS  Google Scholar 

  2. Kavitha, L., Muniyappan, A., Prabhu, A., Zdravkovic, S., Jayanthi, S., Gopi, D.: Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J. Biol. Phys. 39, 15–35 (2013)

    Article  Google Scholar 

  3. Kavitha, L., Venkatesh, M., Jayanthi, S., Gopi, D.: Propagation of proton solitons in hydrogen-bonded chains with an asymmetric double-well potential. Phys. Scr. 86, 025403 (2012)

    Article  ADS  Google Scholar 

  4. Kavitha, L., Parasuraman, E., Venkatesh, M., Mohamadou, A., Gopi, D.: Breather-like protonic tunneling in a discrete hydrogen bonded chain with heavy-ionic interactions. Phys. Scr. 87, 035007 (2013)

    Article  ADS  Google Scholar 

  5. Kavitha, L., Jayanthi, S., Muniyappan, A., Gopi, D.: Protonic transport through solitons in hydrogen-bonded systems. Phys. Scr. 84, 035803 (2011)

    Article  ADS  Google Scholar 

  6. Pethig, R: A synopsis of calculations of the energy band structures for protein molecules. J. Biol. Phys. 6, 1–28 (1978)

    Article  Google Scholar 

  7. Schulz, G.E., Schirmar, R.H.: Principles of Protein structure. Springer, New York (1979)

    Book  Google Scholar 

  8. Davydov, A.S.: Biology and Quantum Mechanics. Pergamon, New York (1982)

    Google Scholar 

  9. Ho, M.-W., Popp, F.A., Warnke, U.: Bioelectrodynamics and Boicommunication. World Scientific (1994)

  10. Careri, G., Buontempo, U., Galluzi, F., Scott, A. C., Gratton, E., Erramilli, S.: Spectroscopic evidence for Davydov-like solitons in acetanilide. Phys. Rev. B 30, 4689–4702 (1984)

    Article  ADS  Google Scholar 

  11. Barthes, M., Kellouai, H., Page, G., Moret, J., Johnson, S.W., Eckert, J.: H-localized mode in chains of hydrogen-bonded amide groups. Physica D 68, 45–50 (1993)

    Article  ADS  Google Scholar 

  12. Scott, A.C.: Davydov’s soliton revisited. Physica D 51, 333–342 (1991)

    Article  ADS  MATH  Google Scholar 

  13. Peyrard, M. (ed.): Nonlinear Excitations in Biomolecules. Springer, Berlin (1995)

  14. Cruzeiro, L.: The Davydov/Scott model for energy storage and transport in proteins. J. Biol. Phys. 35, 43–55 (2009)

    Article  Google Scholar 

  15. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)

    Article  Google Scholar 

  16. Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theor. Biol. 66(2), 379–387 (1977)

    Article  Google Scholar 

  17. Davydov, A.S.: Solitons in Molecular Systems. Phys. Scr. 20, 387–394 (1979)

    Article  ADS  MATH  Google Scholar 

  18. Pouthier, V.: Two vibron bound states in α-helix proteins: the interplay between the intramolecular anhorminicity and the strong vibron phonon coupling. Phys. Rev. E 68, 021909 (2003)

    Article  ADS  Google Scholar 

  19. Scott, A.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)

    Article  ADS  Google Scholar 

  20. Takeno, S.: Vibron solitons in one-dimensional molecular crystals. Prog. Theor. Phys. 71(2), 395–398 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. Takeno, S.: Vibron solitons and coherent polarization in an exactly tractable oscillator-lattice system–applications to solitons in α helical proteins and Fröhlich’s idea of biological activity. Prog. Theor. Phys. 73, 853–873 (1985)

    Article  ADS  Google Scholar 

  22. Goichuk, I. A. , Kukhtin, V.V., Petrov, E.G.: Orientational oscillations of the peptide groups of an α-helix. J. Biol. Phys. 17, 95–102 (1989)

    Article  Google Scholar 

  23. Takeno, S.: Supersonic vibron solitons and their possible existence in polypeptides. J. Biol. Phys. 24, 185–199 (1999)

    Article  Google Scholar 

  24. Daniel, M., Deepamala, K.: Davydov soliton in alpha helical proteins: higher-order and discreteness effects. Physica A 221, 241–255 (1995)

    Article  ADS  Google Scholar 

  25. Zolotariuk, A.V., Savin, A.V.: Solitons in molecular chains with intramolecular nonlinear interactions. Physica D 46, 295–314 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Xu, J.-Z.: Soliton dynamics in the helix polypeptide chains. Chaos Solitons Fractals 11, 779–790 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Schlag, E.W., Sheu, S.-Y., Yang, D.-Y, Selzle, H.L., Lin, S.H.: Theory of charge transport in polypeptides. J. Phys. Chem. B 104(52), 7790–7794 (2000)

    Article  Google Scholar 

  28. Cherstvy, A.G., Kornyshev, A.A., Leikin, S.: Torsional deformation of double helix in interaction and aggregation of DNA. J. Phys. Chem. B 108(20), 6508 (2004)

    Article  Google Scholar 

  29. Kornyshev, A.A., Wynveen, A.: Nonlinear effects in the torsional adjustment of interacting DNA. Phys. Rev. E 69, 041905 (2004)

    Article  ADS  Google Scholar 

  30. Takeno, S.: Quantum theory of vibron solitons-coherent states of a vibron-phonon system and self-localized modes-. J. Phys. Soc. Jpn. 59, 3127–3141 (1990)

    Article  ADS  Google Scholar 

  31. Scott, A.C.: Dynamics of Davydov solitons. Phys. Rev. A 26, 578–595 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  32. Yomosa, S.: Toda-Lattice solitons in α-helical proteins. J. Phys. Soc. Japan 53, 3692–3698 (1984)

    Article  ADS  Google Scholar 

  33. Ichinose, S., Minato, T.: Dynamics of the protons in alpha-helical proteins. Chaos Solitons and Fractals 2, 147–154 (1994)

    Article  ADS  Google Scholar 

  34. Magazzu, L., Valenti, D., Caldara, P., La Cognata, A., Spagnolo, B., Falci, G.: Transient dynamics and asymptotic populations in a driven metastable quantum system. Acta Phys. Pol. B 44, 1185–1192 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. Caldara, P., La Cognata, A., Valenti, D., Spagnolo, B., Berritta, M., Paladino, E., Falci, G.: Dynamics of a quantum particle in asymmetric bistable potential with environmental noise. Inter. J. Quan. Info. 9, 119–127 (2011)

    Article  MATH  Google Scholar 

  36. Spagnolo, B., Caldara, P., La Cognata, A., Valenti, D., Fiasconaro, A., Dubkov, A.A., Falci, G.: The bistable potential: an archetype for classical and quantum systems. Inter. J. Modern Physics B 26, 1241006 (2012)

    Article  ADS  Google Scholar 

  37. Tomchuk, P.M., Luk’yanets, S.P.: Coherent tunnel repolarization of a short hydrogen-bonded chain. J. Mol. Struct. 513, 35–45 (1999)

    Article  ADS  Google Scholar 

  38. Kavitha, L., Daniel, M.: Integrability and soliton in a classical one-dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity. J. Phys. A: Math. Gen. 36, 10471–10492 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kodama, Y., Ablowitz, M.J.: Perturbations of solitons and solitary waves. Stud. Appl. Math. 64, 225–245 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kavitha, L., Sathishkumar, P., Gopi, D.: Magnetization reversal through flipping solitons under the localized inhomogeneity. J. Phys. A: Math. Theor. 43, 125201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kavitha, L., Saravanan, M., Sathishkumar, P.: Magnetization reversal through a soliton in a site-dependent weak ferromagnet. Chin. J. Phys. 51(2), 265–292 (2013)

    MathSciNet  Google Scholar 

  42. Kavitha, L., Saravanan, M., Gopi, D.: Propagation of an electromagnetic soliton in an anisotropic biquadratic ferromagnetic medium. Chin. Phys. B 22(3), 030512 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  43. Kavitha, L., Saravanan, M., Srividya, B., Gopi, D.: Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky-Moriya interaction. Phy. Rev. E 84, 066608 (2011)

    Article  ADS  Google Scholar 

  44. Lomdahl , P.S., Kerr, W.C.: Do Davydov solitons exist at 300K? Phys. Rev. Lett. 55, 1235 (1985)

    Article  ADS  Google Scholar 

  45. Pang, X.F.: Improvement of the Davydov theory of bioenergy transport in protein molecular systems. Phys. Rev. E 62, 6989–6998 (2000)

    Article  ADS  Google Scholar 

  46. Careri, G., Buontempo, U., Carta, F, Gratton, E., Scott, A.C.: Infrared absorption in acetanilide by solitons. Phys. Rev. Lett. 51, 304–307 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

L.K. gratefully acknowledges financial support from UGC, India, in the form of a Research Award, NBHM, India, in the form of a major research project, DAE-BRNS, India, in the form of a Young Scientist Research Award, and ICTP, Italy, for providing support under regular associateship scheme. N.A. acknowledges financial support from Central University of Tamilnadu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kavitha.

Appendix

Appendix

$$\begin{array}{@{}rcl@{}} \hat{\phi}_{1}&=&\delta_{1}{S}{\Delta} T{\Delta}+\frac{\delta_{2}}{2\eta}\left( 3{\Delta} {S}{\Delta} T{\Delta}+T{\Delta}\sinh{\Delta}\right)-\frac{\delta_{2}}{\eta}{S}{\Delta} -\alpha\eta^{5} \left[ \left( \frac{49}{10}\right){S}{\Delta} T^{2}{\Delta}-\left( \frac{14}{5}\right)\cosh(2{\Delta}){S}^{3}\right.\\ &&\times{\Delta} T^{4}{\Delta} - \left( \frac{56}{5} \right){S}^{3}{\Delta} T^{4}{\Delta} + \left( \frac{21}{2}\right){\Delta} {S}^{7}{\Delta} T{\Delta} - \left( \frac{63}{4}\right){\Delta} {S}^{5}{\Delta} T{\Delta} -\left( \frac{21}{10}\right){S}^{5}{\Delta} T{\Delta} + \left( \frac{49}{20} \right){S}^{3}{\Delta} T^{2}{\Delta}\\ &&+ \left( \frac{49}{10} \right){S}{\Delta} T{\Delta} + \left( \frac{21}{5} \right){S}{\Delta} T^{6}+\left( \frac{21}{5}\right){S}{\Delta} T{\Delta}{\Delta}- \left( \frac{36}{35}\right)\cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta} + \left( \frac{216}{35}\right){S}^{3}{\Delta} T^{6}{\Delta} \\ && -\left( \frac{87}{35}\right){S}{\Delta} T^{2}{\Delta}+ \left( \frac{27}{4}\right){\Delta} {S}^{9}{\Delta} T{\Delta} - 18{\Delta} {S}^{7}{\Delta} T{\Delta} + \left( \frac{27}{2} \right){\Delta} {S}^{5}{\Delta} T{\Delta} - \left( \frac{27}{28} \right){S}^{7}{\Delta} T^{2}{\Delta} + \left( \frac{171}{70} \right)\\ && {S}^{5}{\Delta} T^{2}{\Delta} -\left( \frac{87}{70}\right){S}^{3}{\Delta} T^{2} {\Delta}- \left( \frac{87}{35}\right){S}{\Delta} T{\Delta} - \left( \frac{18}{7}\right){S}{\Delta} T^{8}{\Delta} - \left( \frac{18}{7} \right){S}{\Delta} T{\Delta} + \left( \frac{5}{2} \right){S}^{3}{\Delta} T^{2}{\Delta} \\ && +10{S}{\Delta} T{\Delta}-\left( \frac{15}{8} \right){S}{\Delta} T^{2}{\Delta}+\left( \frac{45}{16} \right){\Delta} {S}^{5}{\Delta} T{\Delta} - \left( \frac{45}{8} \right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{15}{8} \right){S}{\Delta} T{\Delta} - \left( \frac{5}{4} \right){S}{\Delta} T^{4}{\Delta} \\ && - \left( \frac{5}{4} \right){S}{\Delta} T{\Delta} + \left( \frac{88}{21}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{55}{7} \right){S}^{7}{\Delta} T^{2}{\Delta} -\left( \frac{55}{7} \right){S}^{7}{\Delta} T^{2}{\Delta}+\left( \frac{11}{7} \right){S}^{5}{\Delta} T^{2}{\Delta}+\left( \frac{44}{21}\right){S}^{3}{\Delta}\\ && T^{2}{\Delta} +\left( \frac{88}{21}\right){S}{\Delta} T{\Delta}+ \left( \frac{44}{21}\right){\Delta} {S}{\Delta} T^{2}{\Delta}+\left( \frac{55}{48} \right){S}^{9}{\Delta} T{\Delta} -\left( \frac{275}{126} \right){S}^{7}{\Delta} T{\Delta}+\left( \frac{11}{56} \right){S}^{5}{\Delta} T{\Delta} + \left( \frac{11}{21} \right)\\ &&{S}^{3}{\Delta} T{\Delta} +\left( \frac{11}{14} \right){\Delta} {S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{11}{14}\right)\cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta}+\left( \frac{22}{21}\right){\Delta}{S}^{3}{\Delta} T^{2}{\Delta} +\left( \frac{11}{14} \right){S}^{3}{\Delta} T^{6}{\Delta} \\ && +\left( \frac{36}{35}\right){S}^{3}{\Delta} T^{6}{\Delta}+\left( \frac{6}{35} \right) \cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta} - \left( \frac{29}{70} \right){S}{\Delta} T^{2}{\Delta} - 3{\Delta} {S}^{7}{\Delta} T{\Delta} +\left( \frac{9}{8} \right){\Delta}{S}^{9}{\Delta} T{\Delta}\\ && +\left( \frac{9}{4} \right){\Delta} {S}^{5}{\Delta} T{\Delta} - \left( \frac{9}{56} \right){S}^{7}{\Delta} T^{2}{\Delta} +\left( \frac{57}{140}\right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{29}{140} \right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{29}{70} \right){S}{\Delta} T{\Delta} \\ \end{array} $$
$$\begin{array}{@{}rcl@{}} && -\left( \frac{3}{7}\right){S}{\Delta} T^{8}{\Delta} -\left( \frac{3}{7} \right){S}{\Delta} T{\Delta} - \left( \frac{16}{7} \right){S}{\Delta} T^{2}{\Delta} +\left( \frac{30}{7}\right){S}^{7}{\Delta} T^{2}{\Delta} - \left( \frac{6}{7} \right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{8}{7} \right){S}^{3}{\Delta} T^{2}{\Delta} \\ && -\left( \frac{16}{7} \right){S}{\Delta} T{\Delta} +\left( \frac{10}{7} \right){S}{\Delta} T^{2}{\Delta} + \left( \frac{45}{8} \right){\Delta} {S}^{9}{\Delta} T{\Delta} -\left( \frac{15}{2} \right){\Delta} {S}^{7}{\Delta} T{\Delta} - \left( \frac{45}{56} \right){S}^{7}{\Delta} T^{2}{\Delta} - \left( \frac{10}{7} \right) \\ &&{S}{\Delta} T^{2}{\Delta} + \left( \frac{45}{8} \right){\Delta} {S}^{9}{\Delta} T{\Delta} - \left( \frac{15}{2} \right){\Delta} {S}^{7}{\Delta} T{\Delta} - \left( \frac{45}{56} \right){S}^{7}{\Delta} T^{2}{\Delta} +\left( \frac{15}{28}\right){S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{5}{7} \right){S}^{3}{\Delta} T^{2}{\Delta} \\ && + \left( \frac{10}{7}\right){S}{\Delta} T{\Delta} +\left( \frac{3}{7}\right)\cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta} + \left( \frac{18}{7} \right){S}^{3}{\Delta} T^{6}{\Delta} +\left( \frac{184}{35}\right){\Delta} T^{2}{\Delta} -\left( \frac{69}{7} \right){S}^{7}{\Delta} T^{2}{\Delta}\\ && +\left( \frac{69}{35} \right){S}^{5}{\Delta} T^{2}{\Delta} +\left( \frac{92}{35} \right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{184}{105}\right){S}{\Delta} T{\Delta} - \left( \frac{23}{7}\right){S}{\Delta} T^{2}{\Delta} -\left( \frac{207}{4} \right){\Delta} {S}^{9}{\Delta} T{\Delta} \\ && +\left( \frac{69}{4} \right){\Delta} {S}^{7}{\Delta} T{\Delta}+\left( \frac{207}{112} \right){S}^{7}{\Delta} T^{2}{\Delta} -\left( \frac{69}{56} \right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{69}{42} \right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{23}{7} \right){S}{\Delta} T{\Delta} \\ && -\left( \frac{69}{70} \right)\cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta} + \left( \frac{9}{70} \right)\cosh(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta} -\left( \frac{207}{35} \right){S}^{3}{\Delta} T^{6}{\Delta} + \left( \frac{27}{35} \right){S}^{3}{\Delta} T^{6}{\Delta} \\&& - \left( \frac{87}{280} \right){S}{\Delta} T^{2}{\Delta} +\left( \frac{27}{32} \right){\Delta} {S}^{9}{\Delta} T{\Delta} -\left( \frac{9}{4}\right){\Delta} {S}^{7}{\Delta} T{\Delta}+\left( \frac{27}{16} \right){\Delta} {S}^{5}{\Delta} T{\Delta} -\left( \frac{27}{224} \right){S}^{7}{\Delta} T^{2}{\Delta} \\ &&\left. +\left( \frac{1071}{560} \right){S}^{5}{\Delta} T^{2}{\Delta}-\left( \frac{1071}{1680} \right){S}{\Delta} T{\Delta} -\left( \frac{87}{280} \right){S}{\Delta} T{\Delta} -\left( \frac{9}{28} \right){S}{\Delta} T^{8}{\Delta}-\left( \frac{9}{28} \right){S}{\Delta} T{\Delta} \right] \\ && -\left( \frac{b_{3}\varepsilon^{4}}{12}-1\right)\eta^{3} \left[ \left( \frac{28}{3}\right){S}{\Delta} T^{4}{\Delta} + \left( \frac{28}{3} \right){S}{\Delta} T{\Delta} - 14{S}{\Delta} T^{2}{\Delta} -\left( \frac{21}{2} \right){\Delta} {S}^{5}{\Delta} T{\Delta} +21{\Delta} {S}^{3}{\Delta} T{\Delta}\right.\\ && + \left( \frac{14}{4} \right){S}^{3}{\Delta} T{\Delta} - 14{S}{\Delta} T{\Delta} - 14{\Delta} {S}{\Delta} T{\Delta} + \left( \frac{56}{3} \right){S}{\Delta} T^{2}{\Delta} - \left( \frac{14}{3} \right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{56}{3} \right){S}{\Delta} T{\Delta} \\ && +6{S}{\Delta} T^{5}{\Delta} + 6{S}{\Delta} T{\Delta} + 23{S}{\Delta} T^{2}{\Delta} - 6{\Delta} {S}^{7}{\Delta} T{\Delta} +18{\Delta}{S}^{5}{\Delta} T{\Delta} - 18{\Delta} {S}^{3}{\Delta} T{\Delta} + \left( \frac{6}{5} \right){S}^{5}{\Delta} T{\Delta} \\ && - \left( \frac{33}{5}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{46}{5}\right){S}{\Delta} T{\Delta} + 12{\Delta} {S}{\Delta} T{\Delta} - \left( \frac{52}{5} \right){S}{\Delta} T^{2}{\Delta} - \left( \frac{12}{5} \right){S}^{5}{\Delta} T{\Delta} + \left( \frac{44}{5} \right){S}^{3}{\Delta} T^{2}{\Delta}\\ && -\left( \frac{92}{5} \right){S}{\Delta} T{\Delta} -5{S}{\Delta} T^{2}{\Delta} - 5{S}{\Delta} T{\Delta} + \left( \frac{15}{4} \right){S}{\Delta} T^{2}{\Delta} - \left( \frac{15}{4} \right){\Delta} {S}^{3}{\Delta} T{\Delta} + \left( \frac{15}{2} \right){S}{\Delta} T{\Delta} + \left( \frac{5}{2}\right) \\ &&\left.{\Delta} {S}{\Delta} T{\Delta}- \left( \frac{5}{2}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{5}{2} \right){S}{\Delta} T{\Delta}\right] -\eta\left( 6\xi^{2}+b_{3}\varepsilon^{2}-\frac{b_{3}\varepsilon^{4}\xi^{2}}{2}\right) \left[ \left( \frac{1}{3} \right){S}{\Delta} T^{4}{\Delta} +\left( \frac{1}{3} \right){S}{\Delta} T{\Delta} \right.\\ &&-\left( \frac{1}{2}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{3}{8} \right){\Delta} {S}^{5}{\Delta} T{\Delta} + \left( \frac{3}{4} \right){\Delta} {S}^{3}{\Delta} T{\Delta} +\left( \frac{1}{8}\right){S}^{3}{\Delta} T{\Delta} - \left( \frac{1}{2} \right){S}{\Delta} T{\Delta} - \left( \frac{1}{2} \right){\Delta} {S}{\Delta} T{\Delta}\\ &&\left. +\left( \frac{2}{3} \right){S}{\Delta} T^{2}{\Delta} - \left( \frac{1}{6} \right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{2}{3}\right){S}{\Delta} T{\Delta} \right] -\left( 6\xi^{2}+b_{3}\varepsilon^{2}-\frac{b_{3}\varepsilon^{4}\xi^{2}}{2}\right)\frac{1}{\eta} \left[ \left( -\frac{1}{2}\right){S}^{3}{\Delta} T^{2}{\Delta}\right.\\ && -\left( \frac{2}{3}\right){S}{\Delta} T^{2}{\Delta} -\left( \frac{2}{3}\right){S}{\Delta} T{\Delta} + \left( \frac{1}{4}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{3}{8}\right){\Delta} {S}^{5}{\Delta} T{\Delta} +\left( \frac{1}{8}\right){S}^{3}{\Delta} T^{2}{\Delta} +\left( \frac{1}{4}\right){S}{\Delta} T{\Delta}\\ &&\left. +\left( \frac{1}{3}\right){S}{\Delta} T^{4}{\Delta} +\left( \frac{1}{3}\right){S}{\Delta} T{\Delta} \right] - \eta\left( 12\alpha\xi^{2}-20\right) \left[\left( \frac{1}{15}\right)\cos(2{\Delta}){S}^{3}{\Delta} T^{4}{\Delta} +\left( \frac{4}{15}\right){S}^{3}{\Delta} T^{4}{\Delta} \right.\\ && - \left( \frac{7}{60}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{1}{4}\right){\Delta} {S}^{7}{\Delta} T{\Delta} +\left( \frac{3}{8}\right){\Delta} {S}^{5}{\Delta} T{\Delta}+\left( \frac{1}{60}\right){S}^{5}{\Delta} T{\Delta} -\left( \frac{7}{120}\right){S}^{3}{\Delta} T^{2}{\Delta} \\ && -\left( \frac{7}{60}\right){S}{\Delta} T{\Delta} - \left( \frac{1}{10}\right){S}{\Delta} T^{6}{\Delta} - \left( \frac{1}{10}\right){S}{\Delta} T{\Delta} -\left( \frac{8}{15}\right){S}{\Delta} T{\Delta} -\left( \frac{1}{5}\right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{4}{15}\right){S}^{3}{\Delta} T^{2}{\Delta} \\ && \left.-\left( \frac{8}{15}\right){S}{\Delta} T{\Delta} \right] - \left( 6\alpha\xi^{2}-10\right) \left[\left( \frac{4}{15}\right){S}{\Delta} T^{2}{\Delta} -\left( \frac{1}{2}\right){\Delta} {S}^{7}{\Delta} T{\Delta}+\left( \frac{1}{10}\right){S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{2}{15}\right){S}^{3}{\Delta} T^{2}{\Delta} \right.\\ && \left.+ \left( \frac{4}{15}\right){S}{\Delta} T{\Delta} + \left( \frac{1}{15}\right)\cos(2{\Delta}){S}^{3}{\Delta} T^{4}{\Delta} + \left( \frac{4}{5}\right){S}^{3}{\Delta} T^{4}{\Delta}\right] -\alpha\eta^{2} \left[ \left( \frac{176}{7}\right){S}{\Delta} T^{2}{\Delta} + \left( \frac{11}{7}\right){S}^{7}{\Delta} T^{2}{\Delta} \right.\\ && + \left( \frac{66}{7}\right){S}^{5}{\Delta} T^{2}{\Delta} +\left( \frac{88}{7}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{176}{7}\right){S}{\Delta} T{\Delta} - \left( \frac{33}{7}\right){S}{\Delta} T^{2}{\Delta} +\left( \frac{165}{16}\right){\Delta} {S}^{9}{\Delta} T{\Delta}-\left( \frac{165}{112}\right) \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{S}^{7}{\Delta} T^{2}{\Delta} - \left( \frac{99}{56}\right){S}^{5} {\Delta} T^{2}{\Delta} -\left( \frac{33}{14}\right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{33}{7}\right){S}{\Delta} T{\Delta}- \left( \frac{44}{21}\right){S}{\Delta} T^{2}{\Delta} + \left( \frac{55}{14}\right){S}^{7}{\Delta} T^{2}{\Delta} \\ && - \left( \frac{11}{14}\right){S}^{5}{\Delta} T{\Delta} - \left( \frac{22}{21}\right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{44}{21}\right){S}{\Delta} T{\Delta} + \left( \frac{24}{35}\right){S}{\Delta} T^{2}{\Delta}- \left( \frac{9}{7}\right){S}^{7}{\Delta} T^{2}{\Delta} + \left( \frac{9}{35}\right){S}^{5}\\ && {\Delta} T^{2}{\Delta}+ \left( \frac{24}{35}\right){S}{\Delta} T{\Delta} + \left( \frac{3}{7}\right){S}{\Delta} T^{2}{\Delta} +\left( \frac{27}{16}\right){\Delta} {S}^{9}{\Delta} T{\Delta} - \left( \frac{9}{4}\right){\Delta} {S}^{7}{\Delta} T{\Delta} - \left( \frac{27}{112}\right){S}^{7}{\Delta} T^{2}{\Delta} \\ &&\left. + \left( \frac{9}{56}\right){S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{3}{14}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{3}{7}\right){S}{\Delta} T{\Delta} +\left( \frac{9}{70}\right)\cos(2{\Delta}){S}^{3}{\Delta} T^{6}{\Delta}+\left( \frac{27}{35}\right){S}^{3}{\Delta} T^{6}{\Delta} \right] \\ && -\eta^{2} \left[\left( \frac{5}{2}\right){S}^{5}{\Delta} T{\Delta} +\left( \frac{5}{2}\right){S}{\Delta} T{\Delta}+ 2{\Delta} {S}{\Delta} T^{2}{\Delta} -\left( \frac{3}{4}\right){S}^{5}{\Delta} T{\Delta} + \left( \frac{1}{2}\right){S}^{3}{\Delta} T{\Delta} - 2{\log}\left( \cosh{\Delta}\right){S}{\Delta} \right.\\ &&\left. T{\Delta}- 3{\Delta} {S}^{5}{\Delta} T^{2}{\Delta} - {\Delta} {S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{5}{4}\right){S}{\Delta} T^{5}{\Delta} +\left( \frac{5}{4}\right){S}{\Delta} T{\Delta} \right] -\eta^{3}\left( 12\alpha\xi^{2}-30\right) \left[\left( \frac{1}{15}\right)\cos(2{\Delta})\right.\\ &&{S}^{3}{\Delta} T^{4}{\Delta}+\left( \frac{4}{15}\right){S}^{3}{\Delta} T^{4}{\Delta} + \left( \frac{7}{60}\right){S}{\Delta} T^{2}{\Delta} + \left( \frac{1}{4}\right){S}^{7}{\Delta} T{\Delta} -\left( \frac{3}{8}\right){\Delta} {S}^{5}{\Delta} T{\Delta} - \left( \frac{1}{20}\right){S}^{5}{\Delta} T^{2}{\Delta} \\ &&\left. + \left( \frac{7}{120}\right){S}^{3}{\Delta} T^{2}{\Delta} +\left( \frac{7}{60}\right){S}{\Delta} T{\Delta} + \left( \frac{1}{10}\right){S}{\Delta} T^{6}{\Delta} + \left( \frac{1}{10}\right){S}{\Delta} T{\Delta}\right] -\frac{\alpha}{\eta} \left[\left( \frac{72}{35}\right){S}{\Delta} T^{2}{\Delta} + \left( \frac{9}{14}\right){S}^{7} \right.\\ &&{\Delta} T^{2}{\Delta}+\left( \frac{27}{35}\right){S}^{5}{\Delta} T^{2}{\Delta} +\left( \frac{36}{35}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{72}{35}\right){S}{\Delta} T{\Delta} - \left( \frac{27}{70}\right){S}{\Delta} T^{2}{\Delta} +\left( \frac{27}{32}\right){\Delta} {S}^{9}{\Delta} T{\Delta} \\ && - \left( \frac{27}{224}\right){S}^{7}{\Delta} T^{2}{\Delta} - \left( \frac{81}{560}\right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{27}{140}\right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{27}{70}\right){S}{\Delta} T{\Delta} - \left( \frac{12}{70}\right){S}{\Delta} T^{2}{\Delta} \\ && \left.+ \left( \frac{9}{28}\right){S}^{7}{\Delta} T^{2}{\Delta} - \left( \frac{9}{140}\right){S}^{5}{\Delta} T^{2}{\Delta} - \left( \frac{3}{35}\right){S}^{3}{\Delta} T^{2}{\Delta} - \left( \frac{6}{35}\right){S}{\Delta} T{\Delta} \right] -\eta\left( 20\xi^{2}-\frac{7}{2}\alpha\xi^{4}-24b_{2} \right.\\ &&\left.+\frac{48}{\varepsilon^{2}}\right)\left[\left( \frac{1}{3}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{2}{3}\right){S}{\Delta} T^{2}{\Delta} + \left( \frac{2}{3}\right){S}{\Delta} T{\Delta} + \left( \frac{1}{4}\right){S}{\Delta} T^{2}{\Delta} -\left( \frac{3}{8}\right) {\Delta} {S}^{5}{\Delta} T{\Delta} + 8{S}^{3}{\Delta} T^{2}{\Delta}\right.\\ &&\left.-\frac{12\omega_{0}}{\varepsilon^{2}} \right) \left( {S}{\Delta} T^{2}{\Delta}+{S}{\Delta} T{\Delta} \right)+ \left( \frac{3}{2}\xi_{T}({\Theta}-{\Theta}_{0}) -3b_{1}+\frac{3b_{3}\varepsilon^{2}\xi^{2}}{2}+\frac{b_{3}\varepsilon^{4}\xi^{4}}{8} +\frac{18\omega_{0}}{\varepsilon^{4}} \right) \\ &&\left.\left( {\Delta} {S}{\Delta} T{\Delta} - {S}{\Delta} T^{2}{\Delta} - {S}{\Delta} T{\Delta} \right) \right] - \xi^{4}\eta^{2} \left[ \left( \frac{3}{4}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( T(\frac{\Delta}{2})\right) + \left( \frac{1}{4}\right) {S}^{4}{\Delta} T^{2}{\Delta}\right.\\ && + \left( \frac{3}{8}\right){S}^{2}{\Delta} T^{2}{\Delta} + \left( \frac{3}{4}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( \frac{1}{2}\right) + \left( \frac{3}{10}\right){\Delta} {S}^{6}{\Delta} T{\Delta} - \left( \frac{9}{40}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( T\left( \frac{\Delta}{2}\right)\right)\\ && -\left( \frac{3}{40}\right){S}^{4}{\Delta} T^{2}{\Delta} - \left( \frac{9}{80}\right){S}^{2}{\Delta} T^{2}{\Delta} - \left( \frac{9}{40}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( \frac{1}{2}\right) - \left( \frac{1}{8}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( T\left( \frac{\Delta}{2}\right)\right)\\ &&\left. + \left( \frac{1}{8}\right){S}^{4}{\Delta} T^{2}{\Delta} - \left( \frac{1}{16}\right){S}^{2}{\Delta} T^{2}{\Delta} - \left( \frac{1}{8}\right){S}{\Delta} T{\Delta} Tan^{-1}\left( \frac{1}{2}\right) \right] - \left( 40\alpha\xi^{2}-60\right)\eta^{3} \left[ \left( \frac{8}{15}\right){S}{\Delta} T^{2}{\Delta}\right.\\ && + \left( \frac{1}{5}\right){S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{4}{15}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{8}{15}\right){S}{\Delta} T{\Delta} + \left( \frac{2}{15}\right){S}{\Delta} T^{2}{\Delta} - \left( \frac{1}{4}\right){\Delta} {S}^{7}{\Delta} T{\Delta}\\ && \left.+ \left( \frac{1}{20}\right){S}^{5}{\Delta} T^{2}{\Delta} + \left( \frac{1}{15}\right){S}^{3}{\Delta} T^{2}{\Delta} + \left( \frac{2}{15}\right){S}{\Delta} T{\Delta} + \left( \frac{2}{15}\right){S}^{3}{\Delta} T^{4}{\Delta} + \left( \frac{1}{30}\right)\cos(2{\Delta}){S}^{3}{\Delta} T^{4}{\Delta} \right]\\ && -\alpha\xi^{4} \left[ \left( \frac{1}{4}\right){S}^{2}{\Delta} T^{2}{\Delta} + \left( \frac{1}{4}\right){\Delta} {S}^{4}{\Delta} T{\Delta} \right] + \left[\frac{161}{6}\alpha\eta^{5} +\frac{35}{3}\eta^{3}+\frac{20}{3}\alpha\xi^{2}\eta^{3}+2\alpha\xi^{2}-\frac{10}{3} \right] {S}^{7}{\Delta}\\ && - \left[-\frac{139}{4}\alpha\eta^{5}+\frac{5}{2}\eta^{3}+\frac{15}{4}\eta^{5} - \left( \frac{3}{2}\xi^{2}+\frac{b_{3}\varepsilon^{2}}{4}-\frac{b_{3}\varepsilon^{4}\xi^{2}}{8} \right)\frac{1}{\eta^{2}} -\left( 5\xi^{2}-\frac{7}{8}\alpha\eta^{4} -6b_{2}+\frac{12}{\varepsilon^{2}} \right)\eta\right] {S}^{5}{\Delta}\\ && - \left[\frac{103}{2}\alpha\eta^{5} +\frac{55}{8}\alpha\eta^{2} +\frac{9\alpha}{16\eta} \right]{S}^{9}{\Delta} + \left[\frac{3\xi^{2}}{2}+\frac{b_{3}\varepsilon^{2}}{4} -\frac{b_{3}\varepsilon^{4}\xi^{2}}{8} \right] \eta {S}{\Delta} T^{4}{\Delta} -\left( \frac{b_{3}\varepsilon^{4}}{3}-4 \right) \eta^{3}{S}{\Delta} T^{6}{\Delta}\\ && - \left( \frac{5}{2}-\frac{5}{24}b_{3}\varepsilon^{4} \right) \eta^{3} {S}^{3}{\Delta} T{\Delta} -\frac{2}{3}\eta^{2}\cos(2{\Delta}){S}^{3}{\Delta} T^{3}{\Delta} - \frac{8}{3}\eta^{2}{S}^{3}{\Delta} T^{3}{\Delta} -\left[{\vphantom{0\frac{2}{4}^{y}}}\xi_{T}({\Theta}-{\Theta}_{0}) -2b_{1}\right. \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\left.+b_{3}\varepsilon^{2}\xi^{2}+\frac{b_{3}\varepsilon^{4}\xi^{4}}{12}+\frac{12\omega_{0}}{\varepsilon^{2}} \right] \eta {S}^{2}{\Delta} -\frac{\xi^{4}\eta^{2}{S}^{6}{\Delta}}{4} -\frac{\alpha\varepsilon^{4}{S}^{4}{\Delta}}{6} + \left( \frac{7b_{3}\varepsilon^{4}}{12} -7 \right)\frac{1}{\eta^{2}}{S}{\Delta} + \left[6\xi^{2}+b_{3}\varepsilon^{2}\right.\\ &&\left. -\frac{b_{3}\varepsilon^{4}\xi^{2}}{2} \right]\frac{\eta^{2}}{4}{S}{\Delta} - \left( \frac{b_{3}\varepsilon^{4}\eta^{5}}{3}-4\eta^{5} \right){S}{\Delta} + \left[\frac{75}{4}\alpha\eta^{5}-\frac{25}{2}\eta^{3}-3\alpha\xi^{2}-10\alpha\xi^{2}\eta^{3}+5 \right]{\Delta} {S}^{7}{\Delta} T{\Delta}\\ && +\left[\frac{15}{4}\eta^{3}+\frac{45}{8}\eta^{5}-\frac{849}{16}\alpha\eta^{5}-\frac{\xi^{2}}{\eta^{2}}-\frac{3}{8}b_{3}\varepsilon^{2}-\frac{3}{16}\varepsilon^{4}\xi^{2}-\frac{15\xi^{2}}{2\eta} -\frac{21\alpha\eta\xi^{4}}{16} -9b_{2}\eta+\frac{18\eta}{\varepsilon^{2}} \right] {\Delta} {S}^{5}{\Delta} T{\Delta}\\ && + \left[\frac{165}{16}\alpha\eta^{2} +\frac{27\alpha}{32\eta}+\frac{309}{2}\alpha\eta^{5} \right]{\Delta} {S}^{9}{\Delta} T{\Delta} -\eta\left[\frac{9}{4}\xi^{2}+\frac{3b_{3}\varepsilon^{2}}{8} -\frac{3b_{3}\varepsilon^{4}\xi^{2}}{16} \right]{\Delta} {S}{\Delta} T^{5}{\Delta} + \left( \frac{b_{3}\varepsilon^{4}}{2}-6 \right)\\ && \eta^{3}{S}{\Delta} T^{7}{\Delta}+\left[\frac{15\eta^{3}}{4}-\frac{5\eta^{3}b_{3}\varepsilon^{4}}{16} \right] {\Delta} {S}^{3}{\Delta} T{\Delta} + 4\eta^{2}{S}^{3}{\Delta} T^{4}{\Delta} +\eta^{2}{\Delta}\cos(2{\Delta}){S}^{3}{\Delta} T^{4}{\Delta} - \frac{3}{2\eta}\left[{\vphantom{0\frac{2}{5}}}\xi_{T} \right.\\ &&\left.({\Theta}-{\Theta}_{0})-2b_{1}+b_{3}\varepsilon^{2}\xi^{2}+\frac{b_{3}\varepsilon^{4}\xi^{4}}{12}+\frac{12\omega_{0}}{\varepsilon^{2}} \right]{\Delta} {S}^{2}{\Delta} T{\Delta} +\frac{3}{10}\xi^{4}\eta^{2}{\Delta} {S}^{6}{\Delta} T{\Delta}+\frac{1}{4}\alpha\varepsilon^{4}{\Delta} {S}^{4}{\Delta}\\ && T{\Delta}+\left[\frac{3}{2\eta}\left( 7-\frac{7}{12}b_{3}\varepsilon^{4} \right)-\frac{3\eta}{8} \left( 6\xi^{2}+b_{3}\varepsilon^{2}-\frac{b_{3}\varepsilon^{4}\xi^{2}}{2} \right) +\frac{3}{2}\left( b_{3}\varepsilon^{4}\eta^{3}-4\eta^{3} \right) \right] {\Delta} {S}{\Delta} T{\Delta}\\ && +\left[-\frac{125}{12}\alpha\eta^{5} - \frac{35}{6}\eta^{3}-\alpha\xi^{2}+\frac{5}{3} -\frac{5}{3}\alpha\xi^{2}\eta^{3} \right] {S}^{6}{\Delta} T{\Delta} s{\Delta}+ \left[\frac{5}{4}\eta^{3} - \frac{41}{2}\alpha\eta^{5} - \left( \frac{3}{4}\xi^{2}+\frac{b_{3}\varepsilon^{2}}{8} \right.\right.\\ &&\left.\left. -\frac{b_{3}\varepsilon^{4}\xi^{2}}{16} \right)\frac{1}{\eta^{2}} - \left( \frac{5}{2}\xi^{2} -\frac{7}{16}\alpha\xi^{4}-3b_{2} +\frac{6}{\varepsilon^{2}} \right)\eta \right]{S}^{4}{\Delta} T{\Delta} s{\Delta} + \left[\frac{103}{2}\alpha\eta^{5}+\frac{55}{16} \alpha\eta^{2} +\frac{9\alpha}{32\eta} \right]\\ && {S}^{8}{\Delta} T{\Delta} s{\Delta}- \eta\left[\frac{3\xi^{2}}{4} +\frac{b_{3}\varepsilon^{2}}{8} -\frac{b_{3}\varepsilon^{4}\xi^{2}}{16} \right]T^{5}{\Delta} s{\Delta} +\left[\frac{b_{3}\varepsilon^{4}}{6}-2 \right] \eta^{3}T^{7}{\Delta} s{\Delta} +\left[\frac{5}{4} -\frac{5b_{3}\varepsilon^{4}}{48} \right]\\ && \eta^{3}{S}^{2}{\Delta} T{\Delta} s{\Delta}+ \frac{4}{3}\eta^{2}{S}^{2}{\Delta} T^{4}{\Delta} s{\Delta} +\frac{\eta^{2}}{3}\cos(2{\Delta}){S}^{2}{\Delta} T^{4}{\Delta} s{\Delta} - \left[\xi_{T}({\Theta}-{\Theta}_{0})-2b_{1} +b_{3}\varepsilon^{2}\xi^{2} \right.\\ &&\left.+\frac{b_{3}\varepsilon^{4}\xi^{4}}{12}+\frac{12\omega_{0}}{\varepsilon^{2}} \right]\frac{1}{2\eta}{S}{\Delta} T{\Delta} s{\Delta} + \frac{\xi^{4}\eta^{2}}{10}{S}^{5}{\Delta} T{\Delta} s{\Delta} + \frac{\alpha}{2}\varepsilon^{4}{S}^{3}{\Delta} T{\Delta} s{\Delta} + \left[\left( 7-\frac{7b_{3}\varepsilon^{4}}{12}\right)\right.\\ &&\left. \frac{1}{2\eta^{2}} + \frac{b_{3}\varepsilon^{4}\eta^{3}}{6}-2\eta^{3} -\frac{\eta}{8}\left( 6\xi^{2}+b_{3}\varepsilon^{2} -\frac{b_{3}\varepsilon^{4}\xi^{2}}{2}\right) \right]T{\Delta} s{\Delta}.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{array} $$
(A1)
$$\begin{array}{@{}rcl@{}} \hat{\psi}_{1}&=&\left[\left( \frac{34}{3}\right)\xi\eta^{2}-\left( \frac{14}{3}\right)\alpha\xi\eta^{2}-\left( \frac{118}{45}\right)\alpha\xi\eta^{4}-2\xi^{3}+3\varepsilon^{4}\xi^{3}+\left( \frac{1}{3}\right)b_{3}\varepsilon^{4}\xi\eta^{3} +\left( \frac{5}{18}\right)b_{3} \right.\\ &&\left.\xi\varepsilon^{4}\eta^{2}+\left( \frac{8}{3}\right)\alpha\xi^{3}\eta^{2}-2b_{3}\varepsilon^{2}\xi+\frac{\theta-\theta_{0}}{2} \right]{S}{\Delta} T{\Delta} +\left[\delta_{3}-18\xi\eta^{2}-14\alpha\xi\eta^{2}\right.\\ &&\left.+\left( \frac{3}{2}\right)b_{3}\varepsilon^{4}\xi\eta^{2} +\left( \frac{227}{15}\right)\alpha\xi\eta^{4}+8\alpha\xi^{3}\eta^{2} + \left( \frac{2}{3}\right)b_{3}\varepsilon^{4}\xi^{3}-2\xi^{3}-2b_{3}\varepsilon^{2}\xi +\frac{(\theta-\theta_{0})_{T}}{2} \right] \\ &&{S}{\Delta} + \left[\left( \frac{\delta_{4}}{2\eta}\right) + \left( \frac{1}{3}\right)b_{3}\varepsilon^{4}\xi - \left( \frac{7}{2}\right)\xi\eta^{2}+4\xi^{3}+2b_{3}\varepsilon^{2}\xi -\left( \frac{1}{3}\right)b_{3}\varepsilon^{4}\xi^{3} -\left( \frac{1}{24}\right)b_{3}\varepsilon^{4}\xi\eta^{2}\right. \\ &&\left.{\vphantom{0\frac{2}{4}}}-(\theta-\theta_{0})_{T} \right] {\Delta}~{S}{\Delta} + \left[ \left( \frac{23}{3}\right)\xi\eta^{2}- 3b_{3}\varepsilon^{4}\xi\eta^{2} +\left( \frac{14}{3}\right)\alpha\xi\eta^{2}-2\alpha\xi^{3}\eta^{2}-2\alpha\xi\eta^{4} \right.\\ &&\left.-\left( \frac{5}{24}\right)b_{3}\varepsilon^{4}\eta^{2} \right] {\Delta}~{S}^{5}{\Delta} +\left[2\xi\eta^{2}+2\alpha\xi\eta^{2} - \left( \frac{1}{6}\right)b_{3}\varepsilon^{4}\xi -\xi^{3}-b_{3}\varepsilon^{2} - \left( \frac{1}{2}\right)b_{3}\varepsilon^{4}\xi^{3} \right.\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\left.+\left( \frac{1}{2}\right)b_{3}\varepsilon^{2}\xi-\frac{(\theta-\theta_{0})_{T}}{3} \right] {\Delta}~{S}^{3}{\Delta}+\left[ \left( \frac{-13}{3}\right) \xi\eta^{2} +\left( \frac{1}{3}\right)\alpha\xi\eta^{2}-\left( \frac{5}{36}\right)\varepsilon^{4}\xi\eta^{2} +\left( \frac{4}{3}\right)\right.\\ &&\left.\alpha\xi^{3}\eta^{2}-\left( \frac{59}{45}\right)\alpha\xi\eta^{4} \right] {S}^{3}{\Delta} T{\Delta} +\left[ \left( \frac{-20}{3}\right)\xi\eta^{2}- \left( \frac{5}{9}\right)b_{3}\varepsilon^{4}\xi\eta^{2}+\left( \frac{16}{3}\right)\alpha\xi^{3}\eta^{2} \right] {S}{\Delta} T{\Delta}\\ && -\left( \frac{112}{15}\right)\alpha\xi\eta^{4} {S}^{3}{\Delta} T^{3}{\Delta} \left( \frac{14}{3}\right){\Delta} {S}{\Delta}+ \left( \frac{\eta_{T}}{\eta^{2}}\right)~{\Delta} {S}{\Delta} T{\Delta} - \left( \frac{4}{3}\right)\alpha\xi\eta^{4} \cos(2{\Delta}) {S}\\ &&{\Delta} T^{3}{\Delta}-\frac{4}{5}\alpha\xi\eta^{4} {S}{\Delta} T{\Delta} + \left[ \frac{\delta_{4}}{2\eta} - \left( \frac{1}{2}\right)b_{3}\varepsilon^{4}\xi\eta^{2} +\frac{\xi\eta^{2}}{2} \right] s{\Delta} -\frac{26}{15}\alpha\xi\eta^{4} {S}{\Delta} T{\Delta}\\ &&+2\alpha\xi\eta^{4} {S}{\Delta} +3\alpha\xi\eta^{4} {S}{\Delta} T^{4}{\Delta}+\frac{\eta_{T}}{2\eta^{2}}{\Delta}^{2} {S}{\Delta}+ \left[ \frac{\xi\eta^{2}}{2}-\left( \frac{1}{24}\right)b_{3}\varepsilon^{4}\xi\eta^{2} \right] {\Delta} {S}{\Delta} T^{6}{\Delta}\\ &&-\alpha\xi\eta^{4} {S}^{4}{\Delta} +\left[ \left( \frac{-5}{2}\right) \xi\eta^{2}-\left( \frac{5}{8}\right)b_{3}\varepsilon^{4}\eta^{2}+\alpha\xi\eta^{4} +2\alpha\xi^{3}\eta^{2} \right] {S}^{4}{\Delta} s{\Delta} +\left[\left( \frac{-1}{24}\right)b_{3}\varepsilon^{4} \right.\\ &&\left.\xi\eta^{2}+\left( \frac{1}{2}\right)\xi\eta^{2} \right] \tanh^{6}{\Delta}s{\Delta} -\left( \frac{7}{3}\right)\alpha\xi\eta^{4} {S}{\Delta} s{\Delta} +\left[ \xi^{3}+\left( \frac{1}{2}\right)b_{3}\varepsilon^{2}\xi -\left( \frac{1}{12}\right){S}^{2}{\Delta} s{\Delta}\right]. \end{array} $$
(A2)

where, SΔ=sechΔ, \(\mathrm {T}{\Delta }=\tanh {\Delta }\) and \(\mathrm {s}{\Delta }=\sinh {\Delta }\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, L., Priya, R., Ayyappan, N. et al. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain. J Biol Phys 42, 9–31 (2016). https://doi.org/10.1007/s10867-015-9389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9389-9

Keywords

Navigation