Skip to main content
Log in

Investigation of material modeling in fluid–structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Different material models for an idealized three-layered abdominal aorta are compared using computational techniques to study aneurysm initiation and fully developed aneurysms. The computational model includes fluid–structure interaction (FSI) between the blood vessel and the blood. In order to model aneurysm initiation, the medial region was degenerated to mimic the medial loss occurring in the inception of an aneurysm. Various cases are considered in order to understand their effects on the initiation of an abdominal aortic aneurysm. The layers of the blood vessel were modeled using either linear elastic materials or Mooney–Rivlin (otherwise known as hyperelastic) type materials. The degenerated medial region was also modeled in either linear elastic or hyperelastic-type materials and assumed to be in the shape of an arc with a thin width or a circular ring with different widths. The blood viscosity effect was also considered in the initiation mechanism. In addition, dynamic analysis of the blood vessel was performed without interaction with the blood flow by applying time-dependent pressure inside the lumen in a three-layered abdominal aorta. The stresses, strains, and displacements were compared for a healthy aorta, an initiated aneurysm and a fully developed aneurysm. The study shows that the material modeling of the vessel has a sizable effect on aneurysm initiation and fully developed aneurysms. Different material modeling of degeneration regions also affects the stress–strain response of aneurysm initiation. Additionally, the structural analysis without considering FSI (called noFSI) overestimates the peak von Mises stress by 52% at the interfaces of the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

CA:

Cerebral artery

CAA:

CA aneurysm

d:

Material incompressibility parameter

DR case A:

degeneration in region A

FSI:

Fluid–structure interaction

HE:

Hyperelastic

ILT:

Intraluminal thrombus

I1:

First deviatoric strain invariant

J:

The ratio of the deformed elastic volume over the undeformed volume materials

K:

Initial bulk modulus

LE:

Linearly elastic

noFSI:

Transient structural analysis without considering FSI

PVMS:

Peak von Mises stress

PWS:

Peak wall stress

SMC:

Smooth muscle cell

WSS:

Wall shear stress

W:

Strain energy density function

ν:

Poisson’s ratio

μ:

Initial shear modulus of materials

References

  1. Humphrey, J.D., Taylor, C.A.: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10, 221–246 (2008)

    Article  Google Scholar 

  2. Raut, S.S., Chandra, S., Shum, J., Finol, E.A.: The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann. Biomed. Eng. 41, 1459–1477 (2013)

    Article  Google Scholar 

  3. Raghavan, M.L., Vorp, D.A., Federle, M.P., Makaraun, M.S., Webster, M.: Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31, 760–769 (2000)

    Article  Google Scholar 

  4. Di Martino, E.S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., Redaelli, A.: Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med. Eng. Phys. 23, 647–655 (2001)

    Article  Google Scholar 

  5. Wang, D.H.J., Makaroun, M.S., Webster, M.W., Vorp, D.A.: Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36, 598–604 (2002)

    Article  Google Scholar 

  6. Fillinger, M.F., Raghavan, M.L., Marra, S.P., Cronenwett, J.L., Kennedy, F.E.: In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36, 589–597 (2002)

    Article  Google Scholar 

  7. Fillinger, M.F., Marra, S.P., Raghavan, M.L., Kennedy, F.E.: Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–732 (2003)

    Article  Google Scholar 

  8. Venkatasubramaniam, A.K., Fagan, M.J., Mehta, T., Mylankal, K.J., Ray, B., Kuhan, G., Chetter, I.C., McCollum, P.T.: A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28, 168–176 (2004)

    Google Scholar 

  9. Leung, J.H., Wright, A.R., Cheshire, N., Crane, J., Thom, S.A., Hughes, A.D., Xu, Y.: Fluid structure interaction of patient-specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed. Eng. Online 5, 33 (2006)

  10. Vande Geest, J.P., Di Martino, E.S., Bohra, A., Makaroun, M.S., Vorp, D.A.: A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085, 11–21 (2006)

    Article  ADS  Google Scholar 

  11. Di Martino, E.S., Bohra, A., Vande Geest, J.P., Gupta, N., Makaroun, M.S., Vorp, D.A.: Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43, 570–576 (2006).

  12. Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M., Hanaoka, M.M., Walker, P., da Silva, E.S.: Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39, 3010–3016 (2006)

    Article  Google Scholar 

  13. Scotti, C.M., Finol, E.A.: Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comput. Struct. 85, 1097–1113 (2007)

    Article  Google Scholar 

  14. Li, Z., Kleinstreuer, C.: A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. Eur. J. Mech. B/Fluids 26, 615–631 (2007)

  15. Li, Z.-Y., U-King-Im, J., Tang, T.Y., Soh, E., See, T.C., Gillard, J.H.: Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J. Vasc. Surg. 47, 928–935 (2008)

    Article  Google Scholar 

  16. Bluestein, D., Dumont, K., De Beule, M., Ricotta, J., Impellizzeri, P., Verhegghe, B., Verdonck, P.: Intraluminal thrombus and risk of rupture in patient-specific abdominal aortic aneurysm – FSI modelling. Comput. Methods Biomech. Biomed. Eng. 12, 73–81 (2009)

    Article  Google Scholar 

  17. Rissland, P., Alemu, Y., Einav, S., Ricotta, J., Bluestein, D.: Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J. Biomech. Eng. 131, 031001 (2009)

    Article  Google Scholar 

  18. Doyle, B.J., Callanan, A., Burke, P.E., Grace, P.A., Walsh, M.T., Vorp, D.A., McGloughlin, T.M.: Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J. Vasc. Surg. 49, 443–454 (2009)

    Article  Google Scholar 

  19. Doyle, B.J., Callanan, A., Walsh, M.T., Grace, P.A., McGloughlin, T.M.: A Finite Element Analysis Rupture Index (FEARI) as an additional tool for abdominal aortic aneurysm rupture prediction. Vasc. Dis. Prev. 6, 114–121 (2009)

    Article  Google Scholar 

  20. Xenos, M., Rambhia, S.H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., Ricotta, J.J., Bluestein, D.: Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann. Biomed. Eng. 38, 3323–3337 (2010)

    Article  Google Scholar 

  21. Georgakarakos, E., Ioannou, C.V., Kamarianakis, Y., Papaharilaou, Y., Kostas, T., Manousaki, E., Katsamouris, A.N.: The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. 39, 42–48 (2010)

    Article  Google Scholar 

  22. Maier, A., Gee, M.W., Reeps, C., Eckstein, H.-H., Wall, W.A.: Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model. Mechanobiol. 9, 511–521 (2010)

    Article  Google Scholar 

  23. Raghavan, M.L., Hanaoka, M.M., Kratzberg, J.A., de Lourdes Higuchi, M., da Silva, E.S.: Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J. Biomech. 44, 2501–2507 (2011)

    Article  Google Scholar 

  24. Doyle, B.J., Callanan, A., Grace, P.A., Kavanagh, E.G.: On the influence of patient-specific material properties in computational simulations: a case study of a large ruptured abdominal aortic aneurysm. Int. J. Numer. Method. Biomed. Eng. 29(2), 150–164 (2013)

  25. Wang, X., Li, X.: A fluid–structure interaction-based numerical investigation on the evolution of stress, strength and rupture potential of an abdominal aortic aneurysm. Comput. Methods Biomech. Biomed. Engin. 16, 1032–1039 (2013)

    Article  Google Scholar 

  26. Chandra, S., Raut, S.S., Jana, A., Biederman, R.W., Doyle, M., Muluk, S.C., Finol, E.A.: Fluid–structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J. Biomech. Eng. 135, 81001 (2013)

    Article  Google Scholar 

  27. Valencia, A., Morales, H., Rivera, R., Bravo, E., Galvez, M.: Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med. Eng. Phys. 30, 329–340 (2008)

    Article  Google Scholar 

  28. Valencia, A., Muñoz, F., Araya, S., Rivera, R., Bravo, E.: Comparison between computational fluid dynamics, fluid–structure interaction and computational structural dynamics predictions of flow-induced wall mechanics in an anatomically realistic cerebral aneurysm model. Int. J. Comput. Fluid Dyn. 23, 649–666 (2009)

    Article  MATH  Google Scholar 

  29. Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E.: Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput. Mech. 43, 151–159 (2008)

    Article  MATH  Google Scholar 

  30. Torii, R., Oshima, M., Kobayashi, T., Takagi, K., Tezduyar, T.E.: Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Comput. Methods Appl. Mech. Eng. 198, 3613–3621 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Costalat, V., Sanchez, M., Ambard, D., Thines, L., Lonjon, N., Nicoud, F., Brunel, H., Lejeune, J.P., Dufour, H., Bouillot, P., Lhaldky, J.P., Kouri, K., Segnarbieux, F., Maurage, C.A., Lobotesis, K., Villa-Uriol, M.C., Zhang, C., Frangi, A.F., Mercier, G., Bonafé, A., Sarry, L., Jourdan, F.: Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J. Biomech. 44, 2685–2691 (2011)

    Article  Google Scholar 

  32. Sanchez, M., Ambard, D., Costalat, V., Mendez, S., Jourdan, F., Nicoud, F.: Biomechanical assessment of the individual risk of rupture of cerebral aneurysms: a proof of concept. Ann. Biomed. Eng. 41, 28–40 (2013)

    Article  Google Scholar 

  33. Mower, W.R., Quiñones, W.J., Gambhir, S.S.: Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 26, 602–608 (1997)

    Article  Google Scholar 

  34. Vorp, D.A., Raghavan, M.L., Webster, M.W.: Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J. Vasc. Surg. 27, 632–639 (1998)

    Article  Google Scholar 

  35. Li, Z., Kleinstreuer, C.: Blood flow and structure interactions in a stented abdominal aortic aneurysm model. Med. Eng. Phys. 27, 369–382 (2005)

    Article  Google Scholar 

  36. Scotti, C.M., Shkolnik, A.D., Muluk, S.C., Finol, E.A.: Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4, 64 (2005)

  37. Scotti, C.M., Jimenez, J., Muluk, S.C., Finol, E.A.: Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput. Methods Biomech. Biomed. Eng. 11, 301–322 (2008)

    Article  Google Scholar 

  38. Khanafer, K.M., Bull, J.L., Berguer, R.: Fluid–structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Eur. J. Mech. B/Fluids 28, 88–102 (2009)

  39. Xenos, M., Alemu, Y., Zamfir, D., Einav, S., Ricotta, J.J., Labropoulos, N., Tassiopoulos, A., Bluestein, D.: The effect of angulation in abdominal aortic aneurysms: fluid–structure interaction simulations of idealized geometries. Med. Biol. Eng. Comput. 48, 1175–1190 (2010)

    Article  Google Scholar 

  40. Gao, F., Ueda, H., Gang, L., Okada, H.: Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting. J. Biomech. 46, 1335–1342 (2013)

    Article  Google Scholar 

  41. Wang, X., Li, X.: Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors. Comput. Biol. Med. 41, 812–821 (2011)

    Article  Google Scholar 

  42. Wang, X., Li, X.: Fluid–structure interaction based study on the physiological factors affecting the behaviors of stented and non-stented thoracic aortic aneurysms. J. Biomech. 44, 2177–2184 (2011)

    Article  Google Scholar 

  43. Gao, F., Tang, D., Guo, Z., Sakamoto, M., Matsuzawa, T.: Stress analysis in layered aortic arch model: influence of arch aneurysm and wall stiffness. ICCES 1, 21–27 (2007)

    Google Scholar 

  44. Vorp, D.A., Raghavan, M.L., Muluk, S.C., Makaraun, M.S., Steed, D.L., Shapiro, R., Webster, M.W.: Wall strength and stiffness of aneurysmal and nonaneurysmal abdominal aorta. Ann. N. Y. Acad. Sci. 800, 274–276 (1996)

    Article  ADS  Google Scholar 

  45. Vena, P., Gastaldi, D., Socci, L., Pennati, G.: An anisotropic model for tissue growth and remodeling during early development of cerebral aneurysms. Comput. Mater. Sci. 43, 565–577 (2008)

    Article  Google Scholar 

  46. Eriksson, T., Kroon, M., Holzapfel, G.A.: Influence of medial collagen organization and axial in situ stretch on saccular cerebral aneurysm growth. J. Biomech. Eng. 131, 101010 (2009)

    Article  Google Scholar 

  47. Watton, P.N., Selimovic, A., Raberger, N.B., Huang, P., Holzapfel, G.A., Ventikos, Y.: Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech. Model. Mechanobiol. 10, 109–132 (2011)

    Article  Google Scholar 

  48. Schmid, H., Grytsan, A., Poshtan, E., Watton, P.N., Itskov, M.: Influence of differing material properties in media and adventitia on arterial adaptation – application to aneurysm formation and rupture. Comput. Methods Biomech. Biomed. Eng. 16, 33–53 (2013)

  49. Chatziprodromou, I., Tricoli, A., Poulikakos, D., Ventikos, Y.: Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model. J. Biomech. 40, 412–426 (2007)

    Article  Google Scholar 

  50. Feng, Y., Wada, S., Tsubota, K.-I., Yamaguchi, T.: The application of computer simulation in the genesis and development of intracranial aneurysms. Technol. Health Care 13, 281–291 (2005)

    MATH  Google Scholar 

  51. Feng, Y., Wada, S., Ishikawa, T., Tsubota, K., Yamaguchi, T.: A rule-based computational study on the early progression of intracranial aneurysms using fluid–structure interaction: comparison between straight model and curved model. J. Biomech. Sci. Eng. 3, 124–137 (2008)

    Article  Google Scholar 

  52. Nabaei, M., Fatouraee, N.: Computational modeling of formation of a cerebral aneurysm under the influence of smooth muscle cell relaxation. J. Mech. Med. Biol. 12, 1250006 (2012)

    Article  Google Scholar 

  53. Foutrakis, G.N., Yonas, H., Sclabassi, R.J.: Saccular aneurysm formation in curved and bifurcating arteries. AJNR Am. J. Neuroradiol. 20, 1309–1317 (1999)

    Google Scholar 

  54. Lasheras, J.C.: The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293–319 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  55. Gao, F., Watanabe, M., Matsuzawa, T.: Fluid–structure interaction within 3-layered aortic arch model under pulsatile blood flow. PDCAT’05. 989–992 (2005).

  56. Gao, F., Matsuzawa, T.: FSI within aortic arch model over cardiac cycle and influence of wall stiffness on wall stress in layered wall. Eng. Lett. 15, (2006).

  57. Gao, F., Guo, Z., Sakamoto, M., Matsuzawa, T.: Fluid–structure interaction within a layered aortic arch model. J. Biol. Phys. 32, 435–454 (2006)

    Article  Google Scholar 

  58. Gao, F., Guo, Z., Watanabe, M., Matsuzawa, T.: Loosely coupled simulation for aortic arch model under steady and pulsatile flow. J. Biomech. Sci. Eng. 1, 327–341 (2006)

    Article  Google Scholar 

  59. Khanafer, K., Berguer, R.: Fluid–structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J. Biomech. 42, 2642–2648 (2009)

    Article  Google Scholar 

  60. Humphrey, J.D., Holzapfel, G.A.: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–814 (2012)

    Article  Google Scholar 

  61. Takizawa, K., Bazilevs, Y., Tezduyar, T.E.: Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch. Comput. Methods Eng. 19, 171–225 (2012)

    Article  MathSciNet  Google Scholar 

  62. Bazilevs, Y., Hsu, M.-C., Benson, D.J., Sankaran, S., Marsden, A.L.: Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 45, 77–89 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  63. Takizawa, K., Brummer, T., Tezduyar, T.E., Chen, P.R.: A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J. Appl. Mech. 79, 010908 (2012)

    Article  ADS  Google Scholar 

  64. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33, 475–482 (2000)

    Article  Google Scholar 

  65. Tezduyar, T.E., Sathe, S., Schwaab, M., Conklin, B.S.: Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int. J. Numer. Methods Fluids 57, 601–629 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  66. Mills, C.J., Gabe, I.T., Gault, J.H., Mason, D.T., Ross, J., Braunwald, E., Shillingford, J.P.: Pressure-flow relationships and vascular impedance in man. Cardiovasc. Res. 4, 405–417 (1970)

    Article  Google Scholar 

  67. Takizawa, K., Christopher, J., Tezduyar, T.E., Sathe, S.: Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data. Int. J. Numer. Method. Biomed. Eng. 26, 101–116 (2010)

    Article  MATH  Google Scholar 

  68. Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K.: Space–time finite element techniques for computation of fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 195, 2002–2027 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Takizawa, K., Moorman, C., Wright, S., Christopher, J., Tezduyar, T.E.: Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput. Mech. 46, 31–41 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  70. Wilson, J.S., Baek, S., Humphrey, J.D.: Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc. R. Soc. A 469, 1–19 (2013)

  71. Carallo, C., Irace, C., De Franceschi, M.S., Coppoletta, F., Tiriolo, R., Scicchitano, C., Scavelli, F., Gnasso, A.: The effect of aging on blood and plasma viscosity. An 11.6 years follow-up study. Clin. Hemorheol. Microcirc. 47, 67–74 (2011)

    Google Scholar 

  72. Reeps, C., Maier, A., Pelisek, J., Härtl, F., Grabher-Meier, V., Wall, W.A., Essler, M., Eckstein, H.-H., Gee, M.W.: Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech. Model. Mechanobiol. 12, 717–733 (2013)

    Article  Google Scholar 

  73. Kroon, M., Holzapfel, G.A.: A model for saccular cerebral aneurysm growth by collagen fibre remodelling. J. Theor. Biol. 247, 775–787 (2007)

    Article  MathSciNet  Google Scholar 

  74. Takizawa, K., Takagi, H., Tezduyar, T.E., Torii, R.: Estimation of element-based zero-stress state for arterial FSI computations. Comput. Mech. 54, 895–910 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Gulden Simsek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, F.G., Kwon, Y.W. Investigation of material modeling in fluid–structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms. J Biol Phys 41, 173–201 (2015). https://doi.org/10.1007/s10867-014-9372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9372-x

Keywords

Navigation