Skip to main content
Log in

Homochirality in Bio-Organic Systems and Glyceraldehyde in the Formose Reaction

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The article explores the possibility that the ordering of bio-organic molecules into a homochiral assembly at the origin of life was performed not in aqueous solutions of amino acids or related materials but in racemic glyceraldehyde in the “formose” reaction at high concentration and temperature. Based on physical chemical evidence and computer simulations of condensed fluids, it is argued that the isomerization kinetics of glyceraldehyde is responszible of the symmetry break and the ordering of molecules into homochiral domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Butlerow, A.: Formation Synthetique d'une Substance Sucrée, Compt. Rend. Acad. Set. 53 (1861), 145–147.

    Google Scholar 

  • Breslow, R.: On the Mechanism of the Formose Reaction, Thetrahedron Lett. 21 (1959), 22–26.

    Google Scholar 

  • Schlesinger, G. and Miller, S.L.: Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2, J. Mol. Evol. 19 (1983), 383–390.

    Google Scholar 

  • Vladimirov, M.G., Ryzhkov, Y.F., Alekseev, V.A., Bogdanovskaya, V.A., Otroshchenko, V.A. and Kritsky, M.S.: Elektrochemical Reduction of Carbon Dioxide on Pyrite as a Pathway for Abiogenic Formation of Organic Molecules, Origin Life Evol. Biosphere 34 (2004), 347–360.

    Article  ADS  Google Scholar 

  • Weber, A.L.: The Sugar Model: Catalysis by Amines and Amino Acid Products, Origin Life Evol. Biosphere 31 (2001), 71–86.

    ADS  Google Scholar 

  • Gabel, N.W. and Ponnamperuma, C.: Model for Origin of Monosaccharides, Nature 216 (1967), 453–455.

    ADS  Google Scholar 

  • Washington, J.: The Possible Role of Volcanic Aquifers in Prebiologic Genesis of Organic Compounds and RNA, Origin Life Evol. Biosphere 30 (2000), 53–79.

    Article  ADS  Google Scholar 

  • Pasteur, M.L.: Recherches sur les Proprietes Specifiques des deux Acides qui composent Acide Racémique, C. R. Acad. Sci. 26 (1848), 535; Ann. Chim. Phy. 28 (1850), 56–99.

  • Avalos, M., Babiano, R., Cintas, P., Jimenez, J.L. and Palacios, J.C.: Symmetry Break by Spontaneous Crystalization – Is It The Most Plausible Source of Terrestrial Handedness We Have Long Been Looking For? – A Reappraisal, Origin Life Evol. Biosphere 34 (2004), 391–405.

    Article  ADS  Google Scholar 

  • Bada, J.L.: Kinetics of Racemization of Amino Acids as a Function of pH, J. Amer. Chem. Soc. 94 (1972), 1371–1373.

    Article  Google Scholar 

  • Fedoroňko, M. and Königstein, J.: Kinetics of Mutual Isomerization of Trioses and their Dehydration to Methylglyoxal, Coll. of Czechoslov. Chem. Commun. 34 (1969), 3881–3894.

    Google Scholar 

  • Pizzarello, S.: Chemical Evolution and Meteorites: An Update, Origin Life Evol. Biosphere 34 (2004), 25–34.

    Article  ADS  Google Scholar 

  • Leclercq, M., Collet, A. et Jacques, J.: Mésure de la Stabilité des Racémiques Vrais, Tetrahedron 32 (1976), 821–828.

    Article  Google Scholar 

  • Gresham, W.F. and Grigsby, W.E.: An Improved Synthesis of dl-Glyceraldehyde, J. Org. Chem. 14 (1949), 1103–1107.

    Article  Google Scholar 

  • Vik, J.-E.: Base-Catalyzed Retro Condensation Reactions of Some ot-Hydroxymethyl Carbonyl and Nitro Compounds, Acta Chem. Scand. B 28 (1974), 509–516.

    Google Scholar 

  • Morgenlie, S.: Oxidation of Carbohydrate Derivatives with Silver Carbonate on Celite, Acta Chem. Scand. 27 (1973), 1557–1564.

    Google Scholar 

  • Takats, Z., Nanita, C. and Cooks, R.G.: Serine Octamer Reactions: Indicators of Prebiotic Relevance, Angew. Chem. Int. Ed. 42 (2003), 3521–3523.

    Google Scholar 

  • Kock, K.J., Gozzo, F.C., Nanita, S.C., Takats, Z., Eberlin, M.N. and Cooks, R.G.: Chiral Transmission Between Amino Acids: Chirally Sellective Amino Acid Substitution in the Serine Octamer as a Possible Step in Homochirogenesis, Angew. Chem. Int. Ed. 41 (2002), 1721–1724.

    Google Scholar 

  • Bystrický, S., Sticzay, T., Polyaková, M. and Fedoroňko, M.: Study of d-glyceraldehyde by Circular Dicroism and Ultraviolet Spectroscopy, Coll. Checoslovak. Chem. Comm. 46 240–245.

  • Yaylayan, V.A., Harty-Majors, S. and Ismail, A.A.: Investigation of dl-glyceraldehyde-dihydroxyacetone Interconversion by FTIR Spectroscopy, Carbohydrate Res. 318 (1999), 20–25.

    Google Scholar 

  • Toxvaerd, S.: Droplet Formation in a Ternary-Fluid Mixture: Spontaneous Emulsion and Micelle Formation, J. Phys. Chem. 108 (2004), 8641–8645.

    Google Scholar 

  • Toxvaerd, S.: Molecular Dynamics Simultions of Isomerization Kinetics in Condensed Fluids, Phys. Rev. Lett. 85 (2000), 4747–4750.

    Article  ADS  Google Scholar 

  • Toxvaerd, S.: Domain Catalyzed Chemical Reactions: A Molecular Dynamics Simulation of Isomerization Kinetics, J. Chem. Phys. 120 (2004), 6094–6099.

    Article  ADS  Google Scholar 

  • Holland, H.D.: The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton 1984.

  • Itoh, Y.H., Sugai, A., Uda, I. and Itoh, T.: The Evolution of Lipids, Adv. Space Res. 28 (2001), 719–724.

    Article  ADS  Google Scholar 

  • Peretó, J., López-García, P. and Moreira, D.: Ancestral Lipid Biosynthesis and Early Membrane Evolution, TRENDS in Biol. Sci. 29 (2004), 469–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Toxvaerd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toxvaerd, S. Homochirality in Bio-Organic Systems and Glyceraldehyde in the Formose Reaction. J Biol Phys 31, 599–606 (2005). https://doi.org/10.1007/s10867-005-6063-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-005-6063-7

Key words

Navigation