Skip to main content
Log in

Electron transport chain dysfunction by H2O2 is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrial electron transport chain (ETC) contains thiol groups (−SH) which are reversibly oxidized to modulate ETC function during H2O2 overproduction. Since deleterious effects of H2O2 are not limited to –SH oxidation, due to the formation of other H2O2-derived species, some processes like lipoperoxidation could enhance the effects of H2O2 over ETC enzymes, disrupt their modulation by –SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H2O2 on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H2O2 and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avéret N, Fitton V, Bunoust O, Rigoulet M, Guérin B (1998) Mol Cell Biochem 184:67–79

    Article  Google Scholar 

  • Beal MF (2003) Ann NY Acad Sci 991:120–131

    Article  CAS  Google Scholar 

  • Boveris A, Cadenas E (1975) FEBS Lett 54:311–314

    Article  CAS  Google Scholar 

  • Breuer W, Epsztejn S, Cabantchik ZI (1995) J Biol Chem 270:24209–24215

    Article  CAS  Google Scholar 

  • Buege JA, Aust D (1978) Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cadenas E, Davies KJA (2000) Free Radic. Biol Méd 29:222–230

    CAS  Google Scholar 

  • Cardoso SM, Pereira C, Oliveira R (1999) Free Radic. Biol Méd 26:3–13

    CAS  Google Scholar 

  • Chen Y-R, Gunther MR, Mason RP (1999) J Biol Chem 274:3308–3314

    Article  CAS  Google Scholar 

  • Chen H, Zheng C, Zhang Y, Chang Y-Z, Qian ZM, Shen X (2006) Int J Biochem Cell Biol 38:1402–1416

    Article  CAS  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Manzo-Avalos S, Uribe S, Boldogh I, Saavedra-Molina A (2007) Free Radic Res 41:1212–1223

    Article  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda R, Boldogh I, Saavedra-Molina A (2009) J Bioenerg Biomembr 41:15–28

    Article  Google Scholar 

  • Dikalov S, Losik T, Arbiser JL (2008) Biochem Pharmacol 76:589–596

    Article  CAS  Google Scholar 

  • Dimroth P, Kaim G, Matthey U (2000) J Exp Biol 203:51–59

    CAS  Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Am J Physiol Cell Physiol 287:C246–C256

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) J Biol Chem 177:751–765

    CAS  Google Scholar 

  • Guérin B, Labbe P, Somlo M (1979) Methods Enzymol 55:149–159

    Article  Google Scholar 

  • Hallberg EM, Shu Y, Hallberg RL (1993) Mol Cell Biol 13:3050–3057

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Holman RT (1954) In: Holman RT, Lundberg WO, Malkin T (eds) Progress in the chemistry of fats and other lipids: autooxidation of fats and related substances. Academic Press, New York, pp 51–98

    Google Scholar 

  • Hondorp ER, Matthews RG (2004) PLoS Biol 2:e336

    Article  Google Scholar 

  • Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP (2007) J Biol Chem 282:22040–22051

    Article  CAS  Google Scholar 

  • Hurd TR, Requejo R, Filipovska A, Brown S, Prime TA, Robinson AJ, Fearnley IM, Murphy MP (2008) J Biol Chem 283:24801–24815

    Article  CAS  Google Scholar 

  • Jacob C, Holme AL, Fry FH (2004) Org Biomol Chem 2:1953–1956

    Article  CAS  Google Scholar 

  • Jakob U, Eser M, Bardwell JC (2000) J Biol Chem 275:38302–38310

    Article  CAS  Google Scholar 

  • James AM, Cochemé HM, Smith RAJ, Murphy MP (2005) J Biol Chem 280:21295–21312

    Article  CAS  Google Scholar 

  • Jang S, Imlay JA (2007) J Biol Chem 282:929–937

    Article  CAS  Google Scholar 

  • Jha N, Jurma O, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM, Forman HJ, Andersen JK (2000) J Biol Chem 275:26096–26101

    Article  CAS  Google Scholar 

  • Jones DP (2008) Am J Physiol Cell Physiol 295:849–868

    Article  Google Scholar 

  • Kiley PJ, Storz G (2004) PLoS Biol 2:1714–1717

    Article  CAS  Google Scholar 

  • Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG (2000) Anal Biochem 283:214–221

    Article  CAS  Google Scholar 

  • Kim MH, Chung J, Yang JW, Chung SM, Kwag NH, Yoo JS (2003) Korean J Ophthalmol 17:19–28

    Google Scholar 

  • Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) J Biol Chem 280:37481–37488

    Article  CAS  Google Scholar 

  • Krause KH (2007) Exp Gerontol 42:256–262

    Article  CAS  Google Scholar 

  • Kwok E, Kosman D (2006) In: Tamàs MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. From microbes to man: iron in yeast: mechanisms involved in homeostasis. Springer, Berlin, pp 59–100

    Google Scholar 

  • Lê-Quôc K, Lê-Quôc D, Gaudemer Y (1981) Biochemistry 20:1705–1710

    Article  Google Scholar 

  • Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, Smith RA, Murphy MP (2002) J Biol Chem 277:17048–17056

    Article  CAS  Google Scholar 

  • Longo VD, Liou LL, Valentine JS, Gralla EB (1999) Arch Biochem Biophys 365:131–142

    Article  CAS  Google Scholar 

  • Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J (2004) Polish J Environ Studies 13:397–401

    Google Scholar 

  • Ly JD, Grubb DR, Lawen A (2003) Apoptosis 8:115–128

    Article  CAS  Google Scholar 

  • Malis CD, Weber PC, Leaf A, Bonventre JV (1999) Proc Natl Acad Sci USA 87:8845–8849

    Article  Google Scholar 

  • Martin J, Mahlke K, Pfanner N (1991) J Biol Chem 266:18051–18057

    CAS  Google Scholar 

  • Martin CE, Oh C, Jiang Y (2007) Biochim Biophys Acta 1771:271–285

    CAS  Google Scholar 

  • Masini A, Ceccarelli D, Giovannini F, Montosi G, Garuti C, Pietrangelo AJ (2000) J Bioenerg Biomembr 32:175–182

    Article  CAS  Google Scholar 

  • Matsuno-Yagi A, Hatefi Y (1996) J Biol Chem 271:6164–6171

    Article  CAS  Google Scholar 

  • Muller FL, Crofts AR, Kramer DM (2002) Biochemistry 41:7866–7874

    Article  CAS  Google Scholar 

  • Nicholls DG (2005) Cell Calcium 38:311–317

    Article  CAS  Google Scholar 

  • North JA, Spector AA, Buettner GR (1992) J Biol Chem 267:5743–5746

    CAS  Google Scholar 

  • Nulton-Persson AC, Szweda LI (2001) J Biol Chem 276:23357–23361

    Article  CAS  Google Scholar 

  • Okuda M, Li K, Beard MR, Showalter LA, Scholle F, Lemon SM, Weinman SA (2002) Gastroenterology 122:366–375

    Article  CAS  Google Scholar 

  • Schoneich C, Dillinger U, von Bruchhausen F, Asmus KD (1992) Arch Biochem Biophys 292:456–467

    Article  CAS  Google Scholar 

  • Seppet E, Gruno M, Peetsalu A, Gizatullina Z, Nguyen HP, Vielhaber S, Wussling MHP, Trumbeckaite S, Arandarcikaite O, Jerzembeck D, Sonnabend M, Jegorov K, Zierz S, Striggow F, Gellerich FN (2009) Int J Mol Sci 10:2252–2303

    Article  CAS  Google Scholar 

  • Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM, Protect Study Group (2010) Mov Disord 25:1670–1674

    Article  Google Scholar 

  • Spector A, Wang G-M, Wang R-R (1993) Proc Natl Acad Sci USA 90:7485–7489

    Article  CAS  Google Scholar 

  • Tatsumi T, Kako KJ (1993) Basic Res Cardiol 88:199–211

    CAS  Google Scholar 

  • Turrens JF (2003) J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Ueda N, Guidet B, Shah SV (1993) Am J Physiol 265:F435–F439

    CAS  Google Scholar 

  • Uribe S, Ramirez J, Peña A (1985) J Bact 161:1195–1200

    CAS  Google Scholar 

  • Vygodina TV, Konstantinov AA (2007) Biochemistry (Mosc) 72:1056–1064

    Article  CAS  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Science 279:1718–1721

    Article  CAS  Google Scholar 

  • Zini R, Berdeaux A, Morin D (2007) Free Radic Res 41:1159–1166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Saavedra-Molina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés-Rojo, C., Estrada-Villagómez, M., Calderón-Cortés, E. et al. Electron transport chain dysfunction by H2O2 is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria. J Bioenerg Biomembr 43, 135–147 (2011). https://doi.org/10.1007/s10863-011-9339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9339-6

Keywords

Navigation