Skip to main content
Log in

Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  • Alacid E, Najera C (2008) Aqueous sodium hydroxide promoted cross-coupling reactions of alkenyltrialkoxysilanes under ligand-free conditions. J Org Chem 73:2315–2322

    Article  Google Scholar 

  • Arena G, Fattorusso R, Grasso G, Grasso GI, Isernia C, Malgieri G, Milardi D, Rizzarelli E (2011) Zinc(II) complexes of ubiquitin: speciation, affinity and binding features. Chem Eur J 17:11596–11603

    Article  Google Scholar 

  • Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR (2003) A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas syringae. J Am Chem Soc 125:7200–7208

    Article  Google Scholar 

  • Arnesano F, Banci L, Piccoli M (2005) NMR structures of paramagnetic metalloproteins. Q Rev Biophys 38:167–219

    Article  Google Scholar 

  • Arnesano F, Belviso BD, Caliandro R, Falini G, Fermani S, Natile G, Siliqi D (2011) Crystallographic analysis of metal-ion binding to human ubiquitin. Chem Eur J 17:1569–1678

    Article  Google Scholar 

  • Bertini I, Luchinat C (1984) High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv Inorg Biochem 6:71–111

    Google Scholar 

  • Bertini I, Luchinat C (1996) NMR of paramagnetic substances. Coord Chem Rev 150:1–243

    Article  Google Scholar 

  • Bertini I, Luchinat C (1999) New applications of paramagnetic NMR in chemical biology. Curr Opin Chem Biol 3:145–151

    Article  Google Scholar 

  • Bertini I, Turano P, Vila AJ (1993) Nuclear magnetic resonance of metalloproteins. Chem Rev 93:2833–2932

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog NMR Spectr 40:249–273

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 6:1536–1549

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in paramagnetic NMR of metalloproteins. Dalton 3782–3790

  • Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC (2014) Selective 15N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. J Biomol NMR 59:251–261

    Article  Google Scholar 

  • Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139

    Article  Google Scholar 

  • Donaire A, Salgado J, Moratal JM (1998) Determination of the magnetic axes of cobalt(II) and nickel(II) azurins from 1H NMR data: influence of the metal and axial ligands on the origin of magnetic anisotropy in blue copper proteins. Biochemistry 37:8659–8673

    Article  Google Scholar 

  • Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231

    Article  Google Scholar 

  • Falini G, Fermani S, Tosi G, Arnesano F, Natile G (2008) Structural probing of Zn(II), Cd(II) and Hg(II) binding to human ubiquitin. Chem Commun 5980–5962

  • Geraldes CF (1993) Lanthanide shift reagents. Methods Enzymol 227:43–78

    Article  Google Scholar 

  • Geraldes CF, Luchinat C (2003) Lanthanides as shift and relaxation agents in elucidating the structure of proteins and nucleic acids. Met Ions Biol Syst 40:513–588

    Google Scholar 

  • Gochin M (1998) Nuclear magnetic resonance characterization of a paramagnetic DNA-drug complex with high spin cobalt; assignment of the 1H and 31P NMR spectra, and determination of electronic, spectroscopic and molecular properties. J Biomol NMR 12:243–257

    Article  Google Scholar 

  • Huang F, Pei YY, Zuo HH, Chen JL, Yang Y, Su XC (2013) Bioconjugation of proteins with a paramagnetic NMR and fluorescent tag. Chem Eur J 19:17141–17149

    Article  Google Scholar 

  • Jensen MR, Led JJ (2006) Metal–protein interactions: structure information from Ni(II)-induced pseudocontact shifts in a native nonmetalloprotein. Biochemistry 45:8782–8787

    Article  Google Scholar 

  • Jensen MR, Lauritzen C, Dahl SW, Pedersen J, Led JJ (2004) Binding ability of a HHP-tagged protein towards Ni2+ studied by paramagnetic NMR relaxation: the possibility of obtaining long-range structure information. J Biomol NMR 29:175–185

    Article  Google Scholar 

  • Jia X, Maleckis A, Huber T, Otting G (2011) 4,4′-Dithiobisdipicolinic acid: a small and convenient lanthanide binding tag for protein NMR spectroscopy. Chem Eur J 17:6830–6836

    Article  Google Scholar 

  • Johnston WD, Freiser H (1952) Structure and behavior of organic analytical reagents. III. Stability of chelates of 8-hydroxyquinoline and analogous reagents. J Am Chem Soc 74:5239–5242

    Article  Google Scholar 

  • Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH (2005) Probing copper binding to the prion protein using diamagnetic nickel and 1H NMR: the unstructured N terminus facilitates the coordination of six copper ions at physiological concentrations. J Mol Biol 346:1393–1407

    Article  Google Scholar 

  • Koehler J, Meiler J (2011) Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects. Prog NMR Spectr 59:360–389

    Article  Google Scholar 

  • La Mar GN, Horrocks WD, Holm RH (1973) NMR of paramagnetic molecules. Elsevier, Amsterdam

    Google Scholar 

  • Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J Am Chem Soc 131:2481–2483

    Article  Google Scholar 

  • Li QF, Yang Y, Maleckis A, Otting G, Su XC (2012) Thiol-ene reaction: a versatile tool in site-specific labelling of proteins with chemically inert tags for paramagnetic NMR. Chem Commun 48:2704–2706

    Article  Google Scholar 

  • Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J (2013) Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl 52:4805–4809

    Article  Google Scholar 

  • Liu WM, Overhand M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273–274:2–12

    Article  Google Scholar 

  • Loh CT, Graham B, Abdelkader EH, Tuck KL, Otting G (2015) Generation of pseudocontact shifts in proteins with lanthanides using small “clickable” nitrilotriacetic acid and iminodiacetic acid tags. Chem Eur J 21:5084–5092

    Article  Google Scholar 

  • Ma FH, Chen JL, Li QF, Zuo HH, Huang F, Su XC (2014) Kinetic assay of the Michael addition-like thiol-ene reaction and insight into protein bioconjugation. Chem Asian J 9:1808–1816

    Article  Google Scholar 

  • Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved cross validation of a static ubiquitin structure derived from high precision residual dipolar couplings measured in a drug-based liquid crystalline phase. J Am Chem Soc 136:3752–3755

    Article  Google Scholar 

  • Man B, Su XC, Liang H, Simonsen S, Huber T, Messerle BA, Otting G (2010) 3-Mercapto-2,6-pyridinedicarboxylic acid: a small lanthanide-binding tag for protein studies by NMR spectroscopy. Chem Eur J 16:3827–3832

    Article  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D (2015) Mn(II) tags for DEER distance measurements in proteins via C–S attachment. Dalton Trans 44:20812–20816

    Article  Google Scholar 

  • Nguyen THD, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G (2011) Generation of pseudocontact shifts in protein NMR spectra with a genetically encoded cobalt(II)-binding amino acid. Angew Chem Int Ed 50:692–694

    Article  Google Scholar 

  • Otting G (2008) Prospects for the lanthanides in structural biology by NMR. J Biomol NMR 42:1–9

    Article  Google Scholar 

  • Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev Biophys 39:387–405

    Article  Google Scholar 

  • Park SH, Wang VS, Radoicic J, De Angelis AA, Berkamp S, Opella SJ (2015) Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA). J Biomol NMR 61:185–196

    Article  Google Scholar 

  • Petitjean A, Kyritsakas N, Lehn JM (2005) Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding. Chem Eur J 11:6818–6828

    Article  Google Scholar 

  • Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein–ligand complexes by lanthanide labelling. Acc Chem Res 40:206–212

    Article  Google Scholar 

  • Qi A, Gross A, Jeschke G, Godt A, Drescher M (2014) Gd(III)-PyMTA label is suitable for in-cell EPR. J Am Chem Soc 136:15366–15378

    Article  Google Scholar 

  • Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994) Synthetic, structural and biological studies of the ubiquitin system: chemically synthesized and native ubiquitin fold into identical three-dimensional structures. Biochem J 299:151–158

    Article  Google Scholar 

  • Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C (2014) FANTEN: a new web-based interface for the analysis of magnetic anisotropy-induced NMR data. J Biomol NMR 61:21–34

    Article  Google Scholar 

  • Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16

    Article  Google Scholar 

  • Shishmarev D, Otting G (2013) How reliable are pseudocontact shifts induced in proteins and ligands by mobile paramagnetic metal tags? A modelling study. J Biomol NMR 56:203–216

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Stanton-Cook MJ, Su XC, Otting G, Huber T. http://compbio.anu.edu.au/mscook/PPT/

  • Su XC, Man B, Beeren S, Liang H, Simonsen S, Schmitz C, Huber T, Messerle BA, Otting G (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487

    Article  Google Scholar 

  • Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B (2011) Engineering of a bis-chelator motif into a protein α-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem Commun (Camb) 47:7368–7370

    Article  Google Scholar 

  • Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335

    Article  Google Scholar 

  • Yagi H, Maleckis A, Otting G (2013) A systematic study of labelling an α-helix in a protein with a lanthanide using IDA-SH or NTA-SH tags. J Biomol NMR 55:157–166

    Article  Google Scholar 

  • Yang Y, Li QF, Cao C, Huang F, Su XC (2013) Site-specific labeling of proteins with a chemically stable, high-affinity tag for protein study. Chem Eur J 19:1097–1103

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the 973 program (2013CB910200), the National Science Foundation of China (21473095 and 21273121), and the Australian Research Council (DP120100561 and DP150100383) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Cheng Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 568 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Huang, F., Huber, T. et al. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. J Biomol NMR 64, 103–113 (2016). https://doi.org/10.1007/s10858-016-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0011-7

Keywords

Navigation