Skip to main content
Log in

Dynamics in the solid-state: perspectives for the investigation of amyloid aggregates, membrane proteins and soluble protein complexes

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Aggregates formed by amyloidogenic peptides and proteins and reconstituted membrane protein preparations differ significantly in terms of the spectral quality that they display in solid-state NMR experiments. Structural heterogeneity and dynamics can both in principle account for that observation. This perspectives article aims to point out challenges and limitations, but also potential opportunities in the investigation of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I (2009) Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci 12:U1120–U1567

    Google Scholar 

  • Agarwal V, Fink U, Schuldiner S, Reif B (2007) MAS solid-state NMR studies on the multidrug transporer EmrE. BBA—Biomembranes 1768:3036–3043

    Google Scholar 

  • Agarwal V, Faelber K, Schmieder P, Reif B (2009) High-resolution double-quantum deuterium magic angle spinning solid-state nmr spectroscopy of perdeuterated proteins. J Am Chem Soc 131:2–3

    Google Scholar 

  • Agarwal V, Linser R, Dasari M, Fink U, Lopez del Amo J-M, Reif B (2013) Hydrogen bonding involving side chain exchangeable groups stabilizes amyloid quarternary structure. Phys Chem Chem Phys 15:12551–12557

    Google Scholar 

  • Akasaka K, Ganapathy S, McDowell CA, Naito A (1983) Spin–spin and spin-lattice contributions to the rotating frame relaxation of C-13 in l-alanine. J Chem Phys 78:3567–3572

    ADS  Google Scholar 

  • Akasaka K, Li H, Yamada H, Li RH, Thoresen T, Woodward CK (1999) Pressure response of protein backbone structure. Pressure-induced amide N-15 chemical shifts in BPTI. Protein Sci 8:1946–1953

    Google Scholar 

  • Akbey Ü, Lange S, Franks TW, Linser R, Diehl A, van Rossum BJ, Reif B, Oschkinat H (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Google Scholar 

  • Alla M, Eckman R, Pines A (1980) Spin diffusion and spin-lattice relaxation of deuterium in rotating solids. Chem Phys Lett 71:148–151

    ADS  Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1958) NMR spectra recorded from a crystal rotated at high speed. Nature 182:1659

    ADS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern folding of protein chains. Science 181:223–230

    ADS  Google Scholar 

  • Arnold MR, Kremer W, Ludemann HD, Kalbitzer HR (2002) H-1-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa. Biophys Chem 96:129–140

    Google Scholar 

  • Asami S, Reif B (2013) Proton-detected solid-state NMR at aliphatic sites: applications to crystalline systems. Acc Chem Res 46:2089–2097

    Google Scholar 

  • Asami S, Schmieder P, Reif B (2010) High resolution 1H-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135

    Google Scholar 

  • Austin RH, Chan SS, Jovin TM (1979) Rotational diffusion of cell-surface components by time-resolved phosphoresence anisotropy. Proc Natl Acad Sci USA 76:5650–5654

    ADS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108:10396–10399

    ADS  Google Scholar 

  • Bocan J, Pileio G, Levitt MH (2012) Sensitivity enhancement and low-field spin relaxation in singlet NMR. Phys Chem Chem Phys 14:16032–16040

    Google Scholar 

  • Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a (2)H, (13)C, and (15)N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729

    Google Scholar 

  • Carulla N, Caddy GL, Hall DR, Zurdo J, Gairi M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558

    ADS  Google Scholar 

  • Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855

    ADS  Google Scholar 

  • Chen K-YM, Zhou F, Fryszczyn BG, Barth P (2012) Naturally evolved G protein-coupled receptors adopt metastable conformations. Proc Natl Acad Sci USA 109:13284–13289

    ADS  Google Scholar 

  • Cherry RJ (1979) Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559:289–327

    Google Scholar 

  • Cherry RJ (2005) Membrane protein dynamics: rotational dynamics. In: Yeagle PL (ed) The structure of biological membranes. CRC Press, Boca Raton

    Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultra-high resolution in proton solid-state NMR at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2007a) Quantitative measurement of differential 15N-Hα/β T2 relaxation times in a perdeuterated protein by MAS solid-state NMR spectroscopy. Magn Res Chem 45:S156–S160

    Google Scholar 

  • Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007b) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200

    Google Scholar 

  • Chevelkov V, Zhuravleva AV, Xue Y, Reif B, Skrynnikov NR (2007c) Combined analysis of 15 N relaxation data from solid- and solution-state NMR spectroscopy. J Am Chem Soc 129:12594–12595

    Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2008) Measurement of 15N–T1 relaxation rates in a perdeuterated protein by MAS solid-state NMR spectroscopy. J Chem Phys 128:052316

    ADS  Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009a) Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. J Am Chem Soc 131:14018–14022

    Google Scholar 

  • Chevelkov V, Fink U, Reif B (2009b) Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45:197–206

    Google Scholar 

  • Chevelkov V, Xue Y, Linser R, Skrynnikov NR, Reif B (2010) Comparison of solid-state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics. J Am Chem Soc 132:5015–5017

    Google Scholar 

  • Cole R, Loria JP (2002) Evidence for flexibility in the function of ribonuclease A. Biochemistry 41:6072–6081

    Google Scholar 

  • Cowans BA, Grutzner JB (1993) Examination of homogeneous broadening in solids via rotationally synchronized spin-echo NMR-spectroscopy. J Magn Reson, Ser A 105:10–18

    ADS  Google Scholar 

  • Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin—even an ordinary globular protein can assume a rogue guise if conditions are right. Nature 410:165–166

    ADS  Google Scholar 

  • Fawzi NL, Ying JF, Torchia DA, Clore GM (2010) Kinetics of amyloid beta monomer-to-oligomer exchange by NMR relaxation. J Am Chem Soc 132:9948–9951

    Google Scholar 

  • Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-beta protofibrils probed by solution NMR. Nature 480:268–272

    ADS  Google Scholar 

  • Ferella L, Luchinat C, Ravera E, Rosato A (2013) SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. J Biomol NMR 57:319–326

    Google Scholar 

  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:100–107

    Google Scholar 

  • Gardiennet C, Schutz AK, Hunkeler A, Kunert B, Terradot L, Bockmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angewandt Chem Int Edtk 51:7855–7858

    Google Scholar 

  • Garroway AN (1977) Homogeneous and inhomogeneous nuclear spin echoes in organic solids: adamantane. J Magn Reson 28:365–371

    ADS  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Google Scholar 

  • Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein anabaena sensory rhodopsin probed by solid-state NMR. J Am Chem Soc 136:2833–2842

    Google Scholar 

  • Greenwald J, Riek R (2012) On the possible amyloid origin of protein folds. J Mol Biol 421:417–426

    Google Scholar 

  • Halfmann R, Wright JR, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6:391–399

    Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932

    Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Google Scholar 

  • Heck M, Hofmann KP (2001) Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J Biol Chem 276:10000–10009

    Google Scholar 

  • Helmus JJ, Surewicz K, Nadaud PS, Surewicz WK, Jaroniec CP (2008) Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils. Proc Natl Acad Sci USA 105:6284–6289

    ADS  Google Scholar 

  • Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP (2010) Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 132:2393–2403

    Google Scholar 

  • Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007a) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916

    ADS  Google Scholar 

  • Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Huebner CG, Kern D (2007b) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844

    ADS  Google Scholar 

  • Hiller M, Krabben L, Vinothkumar KR, Castellani F, Van Rossum B, Kühlbrandt W, Oschkinat H (2005) Solid-state magic-angle spinning nmr of outer-membrane protein G from Escherichia coli. ChemBioChem 6:1679–1684

    Google Scholar 

  • Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209

    Google Scholar 

  • Hologne M, Chevelkov V, Reif B (2006) Deuteration of peptides and proteins in MAS solid-state NMR. Prog NMR Spect 48:211–232

    Google Scholar 

  • Hong M, Doherty T (2006) Orientation determination of membrane-disruptive proteins using powder samples and rotational diffusion: a simple solid-state NMR approach. Chem Phys Lett 432:296–300

    ADS  Google Scholar 

  • Jacso T, Franks WT, Rose H, Fink U, Broecker J, Keller S, Oschkinat H, Reif B (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed 51:432–435

    Google Scholar 

  • Kato M, Han TNW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Google Scholar 

  • Kim HJ, Kim NC, Wang Y-D, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi A-S, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495–473: 467

  • Kitahara R, Hata K, Li H, Williamson MP, Akasaka K (2013) Pressure-induced chemical shifts as probes for conformational fluctuations in proteins. Prog NMR Spect 71:35–58

    Google Scholar 

  • Klyszejko AL, Shastri S, Mari SA, Grubmuller H, Muller DJ, Glaubitz C (2008) Folding and assembly of proteorhodopsin. J Mol Biol 376:35–41

    Google Scholar 

  • Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100

    ADS  Google Scholar 

  • Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B (2010) Microsecond time scale mobility in a solid protein as studied by the N-15 R-1 rho site-specific NMR relaxation rates. J Am Chem Soc 132:11850–11853

    Google Scholar 

  • Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32:204–218

    Google Scholar 

  • Lange OF, Lakomek N-A, Fares C, Schroeder GF, Walter KFA, Becker S, Meiler J, Grubmueller H, Griesinger C, de Groot BL (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    ADS  Google Scholar 

  • Le YY, Gong WH, Tiffany HL, Tumanov A, Nedospasov S, Shen WP, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM (2001) Amyloid beta(42) activates a G-protein-coupled chemoattractant receptor, FPR-Like-1. J Neurosci 21:RC123

    Google Scholar 

  • Lewandowski JR, Dumez JN, Akbey U, Lange S, Emsley L, Oschkinat H (2011a) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211

    Google Scholar 

  • Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2011b) Site-specific measurement of slow motions in proteins. J Am Chem Soc 133:16762–16765

    Google Scholar 

  • Linser R, Chevelkov V, Diehl A, Reif B (2007) Sensitivity enhancement using paramagnetic relaxation in MAS solid state NMR of perdeuterated proteins. J Magn Reson 189:209–216

    ADS  Google Scholar 

  • Linser R, Fink U, Reif B (2010) Detection of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132:8891–8893

    Google Scholar 

  • Linser R, Dasari M, Hiller M, Higman V, Fink U, Lopez del Amo J-M, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B (2011) Proton detected solid-state NMR of fibrillar and membrane proteins. Angew Chem Int Ed 50:4508–4512

    Google Scholar 

  • Lopez del Amo J-M, Dasari M, Fink U, Grelle G, Wanker EE, Bieschke J, Reif B (2012a) Structural properties of EGCG induced, non-toxic Alzheimer’s disease Aβ oligomers. J Mol Biol 421:517–524

    Google Scholar 

  • Lopez del Amo JM, Schmidt M, Fink U, Dasari M, Fändrich M, Reif B (2012b) The basic subunit in Alzheimer’s disease beta-amyloid fibrils can be an asymmetric dimer. Angew Chem Int Ed 51:6136–6139

    Google Scholar 

  • Lopez del Amo J-M, Schneider D, Loquet A, Lange A, Reif B (2013) Cryogenic solid state NMR studies of fibrils of the Alzheimer’s disease amyloid-β peptide: perspectives for DNP. J Biomol NMR 56:359–363

    Google Scholar 

  • Lu GJ, Park SH, Opella SJ (2012) Improved H-1 amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers. J Magn Reson 220:54–61

    ADS  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 angstrom resolution. J Mol Biol 291:899–911

    Google Scholar 

  • Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ (2002) Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 99:7402–7407

    ADS  Google Scholar 

  • Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131:15968–15969

    Google Scholar 

  • Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) Structural and mechanistic implications of metal-binding in the small heat-shock protein αB-crystallin. J Biol Chem 287:1128–1138

    Google Scholar 

  • Mainz A, Religa T, Sprangers R, Linser R, Kay LE, Reif B (2013) NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angewandt Chem Int Edt 52:8746–8751

    Google Scholar 

  • Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332

    ADS  Google Scholar 

  • Mollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra CM, Emsley L, Blackledge M (2012) Atomic-resolution structural dynamics in crystalline proteins from NMR and molecular simulation. J Phys Chem Lett 3:3657–3662

    Google Scholar 

  • Morris VK, Linser R, Wilde KL, Duff AP, Sunde M, Kwan AH (2012) Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered beta-sheet core amidst structural heterogeneity. Angewandt Chem Int Edt 51:12621–12625

    Google Scholar 

  • Narayanan S, Reif B (2005) Characterization of chemical exchange between soluble and aggregated states of beta-amyloid by solution state NMR upon variation of the salt conditions. Biochemistry 44:1444–1452

    Google Scholar 

  • Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 105:18349–18354

    ADS  Google Scholar 

  • Park SH, Mrse AA, Nevzorov AA, De Angelis AA, Opella SJ (2006) Rotational diffusion of membrane proteins in aligned phospholipid bilayers by solid-state NMR spectroscopy. J Magn Reson 178:162–165

    ADS  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779

    ADS  Google Scholar 

  • Patzelt H, Ulrich AS, Egbringhoff H, Dux P, Ashurst J, Simon B, Oschkinat H, Oesterhelt D (1997) Towards structural investigations on isotope labelled native bacteriorhodopsin in detergent micelles by solution-state NMR spectroscopy. J Biomol NMR 10:95–106

    Google Scholar 

  • Petkova AT, Yau W-M, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Google Scholar 

  • Qiang W, Kelley K, Tycko R (2013) Polymorph-specific kinetics and thermodynamics of beta-amyloid fibril growth. J Am Chem Soc 135:6860–6871

    Google Scholar 

  • Quillin ML, Matthews BW (2000) Accurate calculation of the density of proteins. Acta Crystallogr Sect D: Biol Crystallogr 56:791–794

    Google Scholar 

  • Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human ß2 adrenergic G-protein-coupled receptor. Nature 450:383–388

    ADS  Google Scholar 

  • Ravera E, Parigi G, Mainz A, Religa TL, Reif B, Luchinat C (2013) Experimental determination of microsecond reorientation correlation times in protein solutions. J Phys Chem B 117:3548–3553

    Google Scholar 

  • Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, Rosay M, Tommassen J, Maas WE, Baldus M (2011) Solid-state NMR spectroscopy on cellular preparations Enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001

    Google Scholar 

  • Rose A, Theune D, Goede A, Hildebrand PW (2013) MP:PD—a data base of internal packing densities, internal packing defects and internal waters of helical membrane proteins. Nucl Acids Res (in press)

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into ß2-adrenergic receptor function. Science 318:1266–1273

    ADS  Google Scholar 

  • Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    ADS  Google Scholar 

  • Samoson A, Tuherm T, Gan Z (2001) High-field high-speed mas resolution enhancement in 1H NMR spectroscopy of solids. Solid State NMR 20:130–136

    Google Scholar 

  • Sapra KT, Besir S, Oesterhelt D, Muller DJ (2006) Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J Mol Biol 355:640–650

    Google Scholar 

  • Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A, Hermans E, Plückthun A (2008) Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci USA 105:14808–14813

    ADS  Google Scholar 

  • Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967

    Google Scholar 

  • Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M (2011) Solid-state NMR measurements of asymmetric dipolar couplings provide insight into protein side-chain motion. Angewandt Chem Int Edt 50:11005–11009

    Google Scholar 

  • Schlinkmann KM, Honegger A, Tureci E, Robison KE, Lipovsek D, Pluckthun A (2012) Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc Natl Acad Sci USA 109:9810–9815

    ADS  Google Scholar 

  • Shahid SA, Bardiaux B, Franks WT, Krabben L, Habeck M, van Rossum B-J, Linke D (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:U1119–U1212

    Google Scholar 

  • Skrynnikov NR (2007) Asymmetric doublets in MAS NMR: coherent and incoherent mechanisms. Magn Res Chem 45:S161–S173

    Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PloS One 5:e9505

    ADS  Google Scholar 

  • Stein WD (1990) Channels, carriers and pumps. An introduction to membrane transport. Academic Press, San Diego

    Google Scholar 

  • Takahashi H, Ayala I, Bardet M, De Paepe G, Simorre J-P, Hediger S (2013) Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc 135:5105–5110

    Google Scholar 

  • Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s A beta peptide: the many roads to perdition. Neuron 43:605–608

    Google Scholar 

  • Tollinger M, Sivertsen AC, Meier BH, Ernst M, Schanda P (2012) Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy. J Am Chem Soc 134:14800–14807

    Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Quart Rev Biophys 39:1–55

    Google Scholar 

  • Ueno H, Suzuki T, Kinosita KJ, Yoshida M (2005) ATP-driven stepwise rotation of FoF1-ATP synthase. Proc Natl Acad Sci USA 102:1333–1338

    ADS  Google Scholar 

  • Vanderhart DL, Earl WL, Garroway AN (1981) Resolution in C-13 NMR of organic-solids using high-power proton decoupling and magic-angle sample spinning. J Magn Reson 44:361–401

    ADS  Google Scholar 

  • Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim S-Y, Jung K-H, Brown LS, Ladizhansky V (2013a) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007

    Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013b) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA 110:16444–16449

    ADS  Google Scholar 

  • Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133:17434–17443

    Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    ADS  Google Scholar 

  • Wiench JW, Lin VS-Y, Pruski M (2008) Si-29 NMR in solid state with CPMG acquisition under MAS. J Magn Reson 193:233–242

    ADS  Google Scholar 

  • Williams JC, McDermott AE (1995) Dynamics of the flexible loop of triosephosphate isomerase—the loop motion is not ligand-gated. Biochemistry 34:8309–8319

    Google Scholar 

  • Yang J, Tasayco ML, Polenova T (2009) Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from Different Time Scales. J Am Chem Soc 131:13690–13702

    Google Scholar 

  • Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR Spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chemie Int Edt 46:8380–8383

    Google Scholar 

  • Zhou DH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ, Tang M, Shah GJ, Brea EJ, Lemkau LR, Rienstra CM (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291–305

    Google Scholar 

  • Zinkevich T, Chevelkov V, Reif B, Saalwachter K, Krushelnitsky A (2013) Internal protein dynamics on ps to μs timescales as studied by multi-frequency 15 N solid-state NMR relaxation. J Biomol NMR 57:219–235

    Google Scholar 

Download references

Acknowledgments

This work was performed in the framework of SFB-1035/Project-B07 (German Research Foundation, DFG). This research was supported by the Helmholtz-Gemeinschaft, and the DFG (Re1435). We are grateful to the Center for Integrated Protein Science Munich (CIPS-M) for financial support. RL acknowledges the Australian Research Council for financial support in terms of a Discovery Early Career Researcher Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linser, R., Sarkar, R., Krushelnitzky, A. et al. Dynamics in the solid-state: perspectives for the investigation of amyloid aggregates, membrane proteins and soluble protein complexes. J Biomol NMR 59, 1–14 (2014). https://doi.org/10.1007/s10858-014-9822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9822-6

Keywords

Navigation