Skip to main content
Log in

Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Magnesium alloys suffer from their high reactivity in common environments. Protective layers are widely created on the surface of magnesium alloys to improve their corrosion resistance. This article evaluates the influence of a calcium-phosphate layer on the electrochemical characteristics of AZ31 magnesium alloy in 0.9 % NaCl solution. The calcium phosphate (CaP) layer was electrochemically deposited in a solution containing 0.1 M Ca(NO3)2, 0.06 M NH4H2PO4 and 10 ml l−1 of H2O2. The formed surface layer was composed mainly of brushite [(dicalcium phosphate dihidrate (DCPD)] as proved by energy-dispersive X-ray analysis. The surface morphology was observed by scanning electron microscopy. Immersion test was performed in order to observe degradation of the calcium phosphatized surfaces. The influence of the phosphate layer on the electrochemical characteristics of AZ31, in 0.9 % NaCl solution, was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy. The obtained results were analysed by the Tafel-extrapolation method and equivalent circuits method. The results showed that the polarization resistance of the DCPD-coated surface is about 25 times higher than that of non-coated surface. The CaP electro-deposition process increased the activation energy of corrosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Merritt K, Brown S. Release of hexavalent chromium from corrosion of stainless steel and cobalt–chromium alloys. J Biomed Mater Res. 1995;29:627–33.

    Article  Google Scholar 

  2. Yang J, Merritt K. Detection of antibodies against corrosion products in patients after Co Cr total joint replacements. J Biomed Mater Res. 1994;28:1249–58.

    Article  Google Scholar 

  3. Woodman J, Black J, Nunamaker D. Release of cobalt and nickel from a new total finger joint prosthesis made of vitallium. J Biomed Mater Res. 1983;17:655–68.

    Article  Google Scholar 

  4. Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res Part A. 2009;91A:221–30.

    Article  Google Scholar 

  5. Almpanis G, Tsigkas G, Koutsojannis C, Mazarakis A, Kounis G, Kounis N. Nickel allergy, Kounis syndrome and intracardiac metal devices. Int J Cardiol. 2010;145:364–5.

    Article  Google Scholar 

  6. Elias C, Lima J, Valiev R, Meyers M. Biomedical applications of titanium and its alloys. J Miner Met Mater Soc. 2008;60:46–9.

    Article  Google Scholar 

  7. Janeček M, Nový F, Stráský J, Harcuba P, Wagner L. Fatigue endurance of Ti–6Al–4V alloy with electro-eroded surface for improved bone in-growth. J Mech Behav Biomed Mater. 2011;4:417–22.

    Article  Google Scholar 

  8. Rho J, Ashman R, Turner C. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26:111–9.

    Article  Google Scholar 

  9. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three dimensional finite element analysis. Clin Oral Implant Res. 2004;15:401–12.

    Article  Google Scholar 

  10. Ashman R. Elastic modulus of trabecular bone material. J Biomech. 1988;21:177–81.

    Article  Google Scholar 

  11. Rho J, Tsui T, Pharr G. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18:1325–30.

    Article  Google Scholar 

  12. Terjesen T, Apalset K. The influence of different degrees of stiffness of fixation plates on experimental bone healing. J Orthop Res. 1988;6:293–9.

    Article  Google Scholar 

  13. Terjesen T. Bone healing after metal plate fixation and external fixation of the osteotomized rabbit tibia. Acta Orthop Scand. 1984;55:69–77.

    Article  Google Scholar 

  14. Wang K. The use of titanium for medical applications in the USA. Mater Sci Eng A. 1996;213:134–7.

    Article  Google Scholar 

  15. Karachalios T, Tsatsaronis C, Efraimis G, Papadelis P, Lyritis G, Diakoumopoulos G. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study. J Arthroplasty. 2004;19:469–75.

    Article  Google Scholar 

  16. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  Google Scholar 

  17. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology. Heart. 2003;89:651–6.

    Article  Google Scholar 

  18. Peuster M, Beerbaum P, Bach FW, Hauser H. Are resorbable implants about to become a reality. Cardiol Young. 2006;16:107–16.

    Article  Google Scholar 

  19. Zartner P, Buettner M, Singer H, Sigler M. First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology. Catheter Cardiovasc Interv. 2007;69:443–6.

    Article  Google Scholar 

  20. Zhang W, Li M, Chen Q, Hu W, Zhang W, Xin W. Effects of Sr on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39:379–83.

    Article  Google Scholar 

  21. Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium- stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.

    Article  Google Scholar 

  22. Gray-Munro JE, Strong M. The mechanisms of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res Part A. 2009;90A:339–50.

    Article  Google Scholar 

  23. Lindenberg M, Windhugen H, Witte F. US Patent Application 2004/0241036 A1, 2004.

  24. Song G. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 2007;49:1696–701.

    Article  Google Scholar 

  25. Jamesh M, Kumar S, Sankara Narayanan T. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J Coat Technol Res. 2011;9:495–502.

    Article  Google Scholar 

  26. Gray JE, Luan B. Protective coatings on magnesium and its alloys: a critical review. J Alloys Compd. 2002;336:88–113.

    Article  Google Scholar 

  27. Chen XB, Birbilis N, Abbott TB. A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium. Corr Sci. 2011;53:2263–8.

    Article  Google Scholar 

  28. Waterman J. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time. Mater Sci and Eng. 2011;176:1756–60.

    Article  Google Scholar 

  29. Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8:20–30.

    Article  Google Scholar 

  30. Barrére F, van Blitterswijk C, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed. 2006;1:317–32.

    Google Scholar 

  31. Dorozhkin S, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Edit. 2002;41:3130–46.

    Article  Google Scholar 

  32. Kumar M, Xie J, Chittur K, Riley C. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution. Biomaterials. 1999;20:1389–99.

    Article  Google Scholar 

  33. LeGeros R, Parsons J, Daculsi G, Driessens F, Lee D, Liu S, et al. Significance of the porosity and physical chemistry of calcium phosphate ceramics biodegradation bioresorption. Ann NY Acad Sci. 1988;523:268–71.

    Article  Google Scholar 

  34. Narayanan R, Seshadri S, Kwon T, Kim K. Calcium phosphate based coatings on titanium and its alloys. J Biomed Mater Res B. 2008;85:279–99.

    Article  Google Scholar 

  35. Uskokovi V, Uskokovi DP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B. 2011;96:152–91.

    Article  Google Scholar 

  36. Yongsheng W. Sol–gel derived hydroxyapatite coatings on metallic implants: characterization, in vitro and in vivo analysis. Biol Biomed Coat. 2011;1:1–33.

    Google Scholar 

  37. Kumar M, Dasarathy H, Riley C. Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J Biomed Mater Res Part A. 1999;45:302–10.

    Article  Google Scholar 

  38. Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J. Characterization of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. J Biomed Mater Res Part A. 1996;30:287–94.

    Article  Google Scholar 

  39. Xie J, Riley C, Chittur K. Effect of albumin on brushite transformation to hydroxyapatite. J Biomed Mater Res. 2001;57:357–65.

    Article  Google Scholar 

  40. Xie J, Riley C, Kumar M, Chittur K. FTIR/ATR study of protein adsorption and brushite transformation to hydroxyapatite. Biomaterials. 2002;23:3609–16.

    Article  Google Scholar 

  41. Xia Z, Grover L, Huang Y, Adamopoulos I, Gbureck U, Triffitt J, et al. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials. 2006;27:4557–65.

    Article  Google Scholar 

  42. Klammert U, Reuther T, Jahn C, Kraski B, Kubler A, Gbureck U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 2009;5:727–34.

    Article  Google Scholar 

  43. Ji C, Ahn J. Clinical experience of the brushite calcium phosphate cement for the repair and augmentation of surgically induced cranial defects following the pterional craniotomy. J Korean Neurosurg Soc. 2010;47:180–4.

    Article  Google Scholar 

  44. Pastorek F, Hadzima B. Study of calcium phosphate (DCPD) electrodeposition process on a Mg–3Al–1Zn magnesium alloy surface. Mater Eng. 2012;19:54–63.

    Google Scholar 

  45. B. Hadzima, F. Pastorek, M. Omasta, Improve biodegradation properties of Mg–3Al–1Zn magnesium alloy by dicalcium phosphate dehydrate coating. In: Advanced manufacturing and repairing technologies in vehicle industry. 30th International Colloquium. Visegrád; 2013. ISBN 978-963-313-079-7, p. 111–115.

  46. Wei B, Tokash JC, Zhang F, Kim Y, Logan BE. Electrochemical analysis of separators used in single-chamber, air–cathode microbial fuel cells. Electrochim Acta. 2013;89:45–51.

    Article  Google Scholar 

  47. Han XG, Zhu F, Zhu XP, Lei MK, Xu JJ. Electrochemical corrosion behavior of modified MAO film on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam. Surf Coat Technol. 2013;228:S164–70.

    Article  Google Scholar 

  48. Škublová L, Hadzima B, Borbás L, Vitosová M. The influence of temperature on corrosion properties of titanium and stainless steel biomaterials. Mater Eng. 2008;15:18–22.

    Google Scholar 

  49. Bukovinová L, Hadzima B. Electrochemical characteristics of magnesium alloy AZ31 in Hank’s solution. Corr Eng Sci Technol. 2012;47:352–7.

    Article  Google Scholar 

  50. Zhou W, Shan D, Han EH, Ke W. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corros Sci. 2009;50:329–37.

    Article  Google Scholar 

  51. Gu XN, Li N, Zhou WR, Zheng YF, Zhao X. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy. Acta Biomater. 2011;7:1880–9.

    Article  Google Scholar 

  52. Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR. Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2composite coating on biodegradable Mg–Ca–Zn alloy. Surf Coat Technol. 2013;222:79–89.

    Article  Google Scholar 

  53. Aljourani J, Raeissi K, Golozar MA. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. Corr Sci. 2009;51:1836–43.

    Article  Google Scholar 

  54. Wintermantel E, Mayer J, Blum J, Eckert K-L, Lüscher P, Mathey M. Tissue engineering scaffolds using superstructures. Biomater. 1996;17:83–91.

    Google Scholar 

  55. Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008;4:2008–15.

    Article  Google Scholar 

  56. Song G, Atrens A, StJohn D, Wu X, Nairn J. The anodic dissolution of magnesium in chloride and sulphate solutions. Corros Sci. 1997;39:1981–2004.

    Article  Google Scholar 

  57. Shi Y, Qi M, Chen Y, Shi P. MAO-DCPD composite coating on Mg alloy for degradable implant applications. Mater Lett. 2011;65:2201–4.

    Article  Google Scholar 

  58. Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.

    Article  Google Scholar 

  59. Chun-Yan Z, Rong-Chang Z, Cheng-Long L, Jia-Cheng G. Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in Hank’s solution. Surf Coat Technol. 2010;204:3636–40.

    Article  Google Scholar 

  60. Song Y, Zhang S, Li J, Zhao C, Zhang X. Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6:1736–42.

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by European regional development fund and Slovak state budget by the project “Research centre of the University of Žilina”, ITMS 26220220183 and “Unique equipment for evaluation of tribological properties of machines parts surfaces”, ITMS 26220220048. Authors are grateful for the support of experimental works by project VEGA No. 1/0831/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Mhaede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadzima, B., Mhaede, M. & Pastorek, F. Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9 % NaCl solution. J Mater Sci: Mater Med 25, 1227–1237 (2014). https://doi.org/10.1007/s10856-014-5161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5161-0

Keywords

Navigation