Skip to main content

Advertisement

Log in

Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The effectiveness of hydroxyapatite (HA) coating prepared by electrodeposition technique in improving the corrosion resistance of commercially pure magnesium (CP-Mg) in simulated body fluid (SBF) is addressed. The coating formed in as-deposited condition is identified as dicalcium phosphate dehydrate (DCPD) (Brushite), which is converted to HA after immersion in 1 M NaOH at 80°C for 2 h. The XRD patterns and FTIR spectra confirm the formation of DCPD and HA. During electrodeposition, the H2PO4 ion is reduced and the reaction between Ca2+ ions and the reduced phosphate ions leads to the formation of DCPD, which is converted to HA following treatment in NaOH. The deposition of HA coating enables a threefold increase in the corrosion resistance of CP-Mg. The ability to offer a significant improvement in corrosion resistance coupled with the bioactive characteristics of the HA coating establish that electrodeposition of HA is a viable approach to engineer the surface of CP-Mg in the development of Mg-based degradable implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamid, H, Coltart, J, “Miracle Stents—A Future Without Restenosis.” Mcgill. J. Med., 10 (2) 105–111 (2007)

    Google Scholar 

  2. Peeters, P, Bosiers, M, Verbist, J, Deloose, K, Heublein, B, “Preliminary Results After Application of Absorbable Metal Stents in Patients with Critical Limb Ischemia.” J. Endovasc. Ther., 12 (1) 1–5 (2005)

    Article  Google Scholar 

  3. Heller, J, Sparer, RV, Zentner, G, In: Chasin, M, Langer, RS (eds.) Biodegradable Polymers as Drug Delivery Systems, pp. 121–161. M. Dekker, New York, 1990

    Google Scholar 

  4. Bostman, OM, “Osteolytic Changes Accompanying Degradation of Absorbable Fracture Fixation Implants.” J. Bone Joint Surg., 73B (4) 679–682 (1991)

    Google Scholar 

  5. Levesque, J, Dube, D, Fiset, M, Mantovani, D, “Materials and Properties for Coronary Stents.” Adv. Mater. Process., 162 (9) 45–48 (2004)

    CAS  Google Scholar 

  6. Vormann, J, “Magnesium: Nutrition and Metabolism.” Mol. Aspects Med., 24 (1–3) 27–37 (2003)

    Article  CAS  Google Scholar 

  7. Zeng, RC, Dietzel, W, Witte, F, Hort, N, Blawert, C, “Progress and Challenge for Magnesium Alloys as Biomaterials.” Adv. Eng. Mater., 10 (8) B3–B14 (2008)

    Article  CAS  Google Scholar 

  8. Upadhyay, D, Manoj, AP, Dubey, RS, Srivastava, VK, “Corrosion of Alloys Used in Dentistry: A Review.” Mater. Sci. Eng. A, 432 (1–2) 1–11 (2006)

    Google Scholar 

  9. Dearnley, PA, “A Brief Review of Test Methodologies for Surface-Engineered Biomedical Implant Alloys.” Surf. Coat. Technol., 198 (1–3) 483–490 (2005)

    Article  CAS  Google Scholar 

  10. Staiger, MP, Pietak, AM, Huadmai, J, Dias, G, “Magnesium and Its Alloys as Orthopedic Biomaterials: A Review.” Biomaterials, 27 (9) 1728–1734 (2006)

    Article  CAS  Google Scholar 

  11. Heublein, B, Rohde, R, Kaese, V, Niemeyer, M, Hartung, W, Haverich, A, “Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?” Heart, 89 (6) 651–656 (2003)

    Article  CAS  Google Scholar 

  12. Peuster, M, Beerbaum, P, Bach, FW, Hauser, H, “Are Resorbable Implants About to Become a Reality?” Cardiol. Young, 16 (2) 107–116 (2006)

    Article  Google Scholar 

  13. Zartner, P, Buettner, M, Singer, H, Sigler, M, “First Biodegradable Metal Stent in a Child with Congenital Heart Disease: Evaluation of Macro and Histopathology.” Catheter. Cardiovasc. Interv., 69 (3) 443–446 (2007)

    Article  Google Scholar 

  14. Erne, P, Schier, M, Resink, TJ, “The Road to Bioabsorbable Stents: Reaching Clinical Reality?” Cardiovasc. Intervent. Radiol., 29 (1) 11–16 (2006)

    Article  Google Scholar 

  15. Zreiqat, H, Howlett, CR, Zannettino, A, Evans, P, Schulze-Tanzil, G, Knabe, C, Shakibaei, M, “Mechanisms of Magnesium-Stimulated Adhesion of Osteoblastic Cells to Commonly Used Orthopaedic Implants.” J. Biomed. Mater. Res., 62 (2) 175–184 (2002)

    Article  CAS  Google Scholar 

  16. Saris, NL, Mervaala, E, Karppanen, H, Jahangir, AK, Lewenstam, A, “Magnesium: An Update on Physiological, Clinical and Analytical Aspects.” Clin. Chim. Acta, 294 (1–2) 1–26 (2000)

    Article  CAS  Google Scholar 

  17. Serre, CM, Papillard, M, Chavassieux, P, Voegel, JC, Boivin, G, “Influence of Magnesium by Human Osteoblasts.” J. Biomed. Mater. Res., 42 (4) 626–633 (1998)

    Article  CAS  Google Scholar 

  18. Li, LC, Gao, JC, Wang, Y, “Evaluation of Cyto-Toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid.” Surf. Coat. Technol., 185 (1) 92–98 (2004)

    Article  CAS  Google Scholar 

  19. Kuwahara, H, Al-Abdullat, Y, Mazaki, N, Tsutsumi, S, Aizawa, T, “Precipitation of Magnesium Apatite on Pure Magnesium Surface During Immersing in Hank’s Solution.” Mater. Trans., 42 (7) 1317–1321 (2001)

    Article  CAS  Google Scholar 

  20. Witte, F, Fischer, J, Crostack, HA, Kaese, V, Pisch, A, Beckmann, F, Windhagen, H, “In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys.” Biomaterials, 27 (7) 1013–1018 (2006)

    Article  CAS  Google Scholar 

  21. Nagels, J, Stokdijk, M, Rozing, PM, “Stress Shielding and Bone Resorption in Shoulder Arthroplasty.” J. Shoulder Elbow Surg., 12 (1) 35–39 (2003)

    Article  Google Scholar 

  22. Lindenberg, AM, Windhugen, H, Witte, F, US Patent Application 2004/0241036 A1, 2004

  23. Song, G, “Control of Biodegradation of Biocompatible Magnesium Alloys.” Corros. Sci., 49 (4) 1696–1701 (2007)

    Article  CAS  Google Scholar 

  24. El-Rahman, SSA, “Neuropathology of Aluminum Toxicity in Rats (Glutamate and GABA Impairment).” Pharmacol. Res., 47 (3) 189–194 (2003)

    Article  CAS  Google Scholar 

  25. Yumiko, N, Yukari, T, Yasuhide, T, Tadashi, S, Yoshio, I, “Differences in Behavior Among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats.” Fund. Appl. Toxicol., 37 (2) 106–116 (1997)

    Article  Google Scholar 

  26. Yang, W, Zhang, P, Liu, J, Xue, Y, “Effect of Long-Term Intake of Y3+ in Drinking Water on Gene Expression in Brains of Rats.” J. Rare Earth, 24 (3) 369–373 (2006)

    Article  Google Scholar 

  27. Karen, JLB, Scott, P, James, FK, “Biomaterial Developments for Bone Tissue Engineering.” Biomaterials, 21 (23) 2347–2359 (2000)

    Article  Google Scholar 

  28. Narayanan, R, Seshadri, SK, Kwon, TY, Kim, KH, “Electrochemical Nano-Grained Calcium Phosphate Coatings on Ti–6Al–4V for Biomaterial Applications.” Scripta Mater., 56 (3) 229–232 (2007)

    Article  CAS  Google Scholar 

  29. Souto, RM, Maria, ML, Rui, LR, “Degradation Characteristics of Hydroxyapatite Coatings on Orthopaedic TiAlV in Simulated Physiological Media Investigated by Electrochemical Impedance Spectroscopy.” Biomaterials, 24 (23) 4213–4221 (2003)

    Article  CAS  Google Scholar 

  30. Souto, RM, Mercedes, ML, Reis, RL, “Electrochemical Behavior of Different Preparations of Plasma-Sprayed Hydroxyapatite Coatings on Ti6Al4V Substrate.” J. Biomed. Mater. Res., 70A (1) 59–65 (2004)

    Article  CAS  Google Scholar 

  31. Yamaguchi, T, Tanaka, Y, Ide-Ektessabi, A, “Fabrication of Hydroxyapatite Thin Films for Biomedical Applications Using RF Magnetron Sputtering.” Nucl. Instrum. Methods B, 249 (1–2) 723–725 (2006)

    Article  CAS  Google Scholar 

  32. Aksakal, B, Gavgali, M, Dikici, B, “The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants.” J. Mater. Eng. Perform., 19 (6) 894–899 (2004)

    Article  Google Scholar 

  33. Man, HC, Chiu, KY, Cheng, FT, Wong, KH, “Adhesion Study of Pulsed Laser Deposited Hydroxyapatite Coating on Laser Surface Nitrided Titanium.” Thin Solid Films, 517 (18) 5496–5501 (2009)

    Article  CAS  Google Scholar 

  34. Yousefpour, M, Afshar, A, Chen, J, Zhang, X, “Electrophoretic Deposition of Porous Hydroxyapatite Coatings Using Polytetrafluoroethylene Particles as Templates.” Mater. Sci. Eng. C, 27 (5–8) 1482–1486 (2007)

    Article  CAS  Google Scholar 

  35. Kar, A, Raja, KS, Misra, M, “Electrodeposition of Hydroxyapatite onto Nanotubular TiO2 for Implant Applications.” Surf. Coat. Technol., 201 (6) 3723–3731 (2006)

    Article  CAS  Google Scholar 

  36. Sobieszczyk, S, “Hydroxyapatite Coatings on Porous Ti and Ti Alloys.” Adv. Mater. Sci., 10 (1) 19–28 (2010)

    CAS  Google Scholar 

  37. Liu, X, Chu, PK, Ding, C, “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications.” Mater. Sci. Eng. R, 47 (3–4) 49–121 (2004)

    Article  Google Scholar 

  38. Sameer, RP, Narendra, BD, “Calcium Phosphate Coatings for Bio-Implant Applications: Materials, Performance Factors, and Methodologies.” Mater. Sci. Eng. R, 66 (1–3) 1–70 (2009)

    Google Scholar 

  39. Ban, S, Hasegawa, J, “Morphological Regulation and Crystal Growth of Hydrothermal-Electrochemically Deposited Apatite.” Biomaterials, 23 (14) 2965–2975 (2002)

    Article  CAS  Google Scholar 

  40. Hu, HB, Lin, CJ, Hu, R, Leng, Y, “A Study on Hybrid Bioceramic Coatings of HA/Poly(vinyl acetate) Co-Deposited Electrochemically on Ti–6Al–4V Alloy Surface.” Mater. Sci. Eng. C, 20 (1–2) 209–214 (2002)

    Article  Google Scholar 

  41. Kokubo, T, Takadama, H, “How Useful is SBF in Predicting In Vivo Bone Bioactivity?” Biomaterials, 27 (15) 2907–2915 (2006)

    Article  CAS  Google Scholar 

  42. Kumar, S, Sankara Narayanan, TSN, “Corrosion Behaviour of Ti–15Mo Alloy for Dental Implant Applications.” J. Dent., 36 (7) 500–507 (2008)

    Article  CAS  Google Scholar 

  43. Kumar, S, Sankara Narayanan, TSN, “Electrochemical Characterization of β-Ti Alloy in Ringer’s Solution for Implant Application.” J. Alloys Compd., 479 (1–2) 699–703 (2009)

    Article  CAS  Google Scholar 

  44. Kumar, S, Sankara Narayanan, TSN, Ganesh Sundara Raman, S, Seshadri, SK, “Thermal Oxidation of Ti6Al4V Alloy: Microstructural and Electrochemical Characterization.” Mater. Chem. Phys., 119 (1–2) 337–346 (2010)

    Article  CAS  Google Scholar 

  45. Jamesh, M, Kumar, S, Sankara Narayanan, TSN, “Corrosion Behavior of Commercially Pure Mg and ZM21Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS.” Corros. Sci., 53 (2) 645–654 (2011)

    Article  CAS  Google Scholar 

  46. Jamesh, M, Kumar, S, Sankara Narayanan, TSN, “Effect of Thermal Oxidation on Corrosion Resistance of Commercially Pure Titanium in Acid Medium.” J. Mater. Eng. Perform. (2011). doi:10.1007/s11665-011-9970-8

  47. Boukamp, BA, Equivalent Circuit, Manual AC-Immittance Data Analysis System. Twente University of Technology, Enschede (1989)

    Google Scholar 

  48. Jingwei, Xu, Butler, IS, Denis, FRG, “FT-Raman and High-Pressure Infrared Spectroscopic Studies of Dicalcium Phosphate Dihydrate (CaHPO4·2H2O) and Anhydrous Dicalcium Phosphate (CaHPO4).” Spectrochim. Acta A, 55 (14) 2801–2809 (1999)

    Article  Google Scholar 

  49. Pilliar, RM, “Overview of Surface Variability of Metallic Endosseous Dental Implants: Textured and Porous Surface-Structured Designs.” Implant Dent., 7 (4) 305–314 (1998)

    Article  CAS  Google Scholar 

  50. Cook, SD, Thomas, KA, Kay, JF, Jarcho, M, “Interface Mechanics and Histology of Titanium and Hydroxylapatite-Coated Titanium for Dental Implant Applications.” Int. J. Oral Maxillofac. Implants, 2 (1) 15–22 (1987)

    CAS  Google Scholar 

  51. Svehla, M, Morberg, P, Zicat, B, Bruce, W, Sonnabend, D, Walsh, WR, “Morphometric and Mechanical Evaluation of Titanium Implant Integration: Comparison of Five Surface Structures.” J. Biomed. Mater. Res., 51 (1) 15–22 (2000)

    Article  CAS  Google Scholar 

  52. Kasemo, B, Lausmaa, J, “Surface Science Aspects on Inorganic Biomaterials.” Crit. Rev. Biocompat., 2 (4) 335–380 (1986)

    Google Scholar 

  53. Chehroudi, B, Mc Donnel, D, Brunette, DM, “The Effects of Micromachined Surfaces on Formation of Bonelike Tissue on Subcutaneous Implants as Assessed by Radiography and Computer Image Processing.” J. Biomed. Mater. Res., 34 (3) 279–290 (1997)

    Article  CAS  Google Scholar 

  54. Wilkinson, CDW, Curtis, ASG, Crossan, J, “Nanofabrication in Cellular Engineering.” J. Vac. Sci. Technol. B, 16 (6) 3132–3136 (1998)

    Article  CAS  Google Scholar 

  55. Song, Y, Zhang, S, Li, J, Zhao, C, Zhang, X, “Electrodeposition of Ca–P Coatings on Biodegradable Mg Alloy: In Vitro Biomineralization Behavior.” Acta Biomater., 6 (5) 1736–1742 (2010)

    Article  CAS  Google Scholar 

  56. Joris, SJ, Amberg, CH, “Nature of Deficiency in Nonstoichiometric Hydroxyapatites. II. Spectroscopic Studies of Calcium and Strontium Hydroxyapatites.” J. Phys. Chem., 75 (20) 3172–3178 (1971)

    Article  CAS  Google Scholar 

  57. Le Geros, RZ, “The Unit-Cell Dimensions of Human Enamel Apatite: Effect of Chloride Incorporation.” Arch. Oral Biol., 20 (1) 63–71 (1975)

    Article  Google Scholar 

  58. Elliott, JC, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam, 1994

    Google Scholar 

  59. Rehman, I, Bonfield, W, “Characterization of Hydroxyapatite and Carbonated Apatite by Photo Acoustic FTIR Spectroscopy.” J. Mater. Sci. Mater. Med., 8 (1) 1–4 (1997)

    Article  CAS  Google Scholar 

  60. Kuo, MC, Yen, SK, “The Process of Electrochemical Deposited Hydroxyapatite Coatings on Biomedical Titanium at Room Temperature.” Mater. Sci. Eng. C, 20 (1–2) 153–160 (2002)

    Article  Google Scholar 

  61. Bard, AJ, Faulkner, LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Chap. 10. Wiley, New York, 2001

  62. Morlidge, JR, Skeldon, P, Thompson, GE, et al., “Gel Formation and the Efficiency of Anodic Film Growth on Aluminium.” Electrochim. Acta, 44 (14) 2423–2435 (1999)

    Article  CAS  Google Scholar 

  63. Baril, G, Blanc, C, Pebere, N, “AC Impedance Spectroscopy in Characterizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys Characterization with Respect to Their Microstructures.” J. Electrochem. Soc., 148 (12) B489–B496 (2001)

    Article  CAS  Google Scholar 

  64. Zhang, Y, Yan, C, Wang, F, Wenfang, Li, “Electrochemical Behavior of Anodized Mg alloy AZ91D in Chloride Containing Aqueous Solution.” Corros. Sci., 47 (11) 2816–2831 (2005)

    Article  CAS  Google Scholar 

  65. Xin, YC, Liu, CL, Zhang, WJ, Huo, KF, Tang, GY, Tian, XB, Chu, PK, “Corrosion Resistance of ZrO2/Zr Coated Biodegradable Surgical Magnesium Alloy.” J. Mater. Res., 23 (2) 312–319 (2008)

    Article  CAS  Google Scholar 

  66. Xin, YC, Liu, CL, Huo, K, Tang, G, Tian, X, Chu, PK, “Corrosion Behavior of ZrN/Zr Coated Biomedical AZ91 Magnesium Alloy.” Surf. Coat. Technol., 203 (17–18) 2554–2557 (2009)

    Article  CAS  Google Scholar 

  67. Song, Y, Shan, D, Chen, R, Zhang, F, Han, E-H, “Biodegradable Behaviors of AZ31 Magnesium Alloy in Simulated Body Fluid.” Mater. Sci. Eng. C, 29 (3) 1039–1045 (2009)

    Article  CAS  Google Scholar 

  68. Mansfeld, F, Analysis and Interpretation of EIS Data for Metals and Alloys, Chapt. 4. Solartron-Schlumberger, Farnborough, 1993

  69. Thompson, I, Campbell, D, “Interpreting Nyquist Responses from Defective Coatings on Steel Substrates.” Corros. Sci., 36 (1) 187–198 (1994)

    Article  CAS  Google Scholar 

  70. Baltat-Bazia, A, Celati, N, Keddam, M, Takenouti H, Wiart R, “Electrochemical Impedance Spectroscopy and Electron Microscopies Applied to the Structure of Anodic Oxide Layers on Pure Aluminium.” Mater. Sci. Forum., 111112 (EMCR IV) 359–368 (1992)

  71. Bardwell, JA, McKubre, MCH, “AC Impedance Spectroscopy of the Anodic Film on Zirconium in Neutral Solution.” Electrochim. Acta, 36 (3–4) 647–653 (1991)

    Article  CAS  Google Scholar 

  72. Ionita, D, Miculescu, F, Bojin, D, Demetrescu, I, “Various Procedures in Electrochemical Evaluation of Hydroxyapatite Films on Titanium.” J. Optoelectron. Adv. Mater., 9 (11) 3316–3319 (2007)

    CAS  Google Scholar 

  73. Hsu, H-C, Wu, S-C, Yang, C-H, Ho, W-F, “ZrO2/Hydroxyapatite Coating on Titanium by Electrolytic Deposition.” J. Mater. Sci. Mater. Med., 20 (2) 615–619 (2009)

    Article  CAS  Google Scholar 

  74. Gu, XN, Zheng, YF, “A Review on Magnesium Alloys as Biodegradable Materials.” Front. Mater. Sci. China, 4 (2) 111–115 (2010)

    Article  Google Scholar 

  75. Hu, J, Wang, C, Ren, WC, Zhang, Su, Liu, F, “Microstructure Evolution and Corrosion Mechanism of Dicalcium Phosphate Dihydrate Coating on Magnesium Alloy in Simulated Body Fluid.” Mater. Chem. Phys., 119 (1–2) 294–298 (2010)

    Article  CAS  Google Scholar 

  76. Meng, EC, Guan, SK, Wang, HX, Wang, LG, Zhu, SJ, Hu, JH, Ren, CX, Gao, JH, Feng, YS, “Effect of Electrodeposition Modes on Surface Characteristics and Corrosion Properties of Fluorine-Doped Hydroxyapatite Coatings on Mg–Zn–Ca Alloy.” Appl. Surf. Sci., 257 (11) 4811–4816 (2011)

    Article  CAS  Google Scholar 

  77. Hiromoto, S, Yamamoto, A, “High Corrosion Resistance of Magnesium Coated with Hydroxyapatite Directly Synthesized in an Aqueous Solution.” Electrochim. Acta, 54 (27) 7085–7093 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks to Dr. S. Srikanth, Director, National Metallurgical Laboratory, Jamshedpur, for his constant support and encouragement to carry out this research study and permission to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. N. Sankara Narayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamesh, M., Kumar, S. & Sankara Narayanan, T.S.N. Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J Coat Technol Res 9, 495–502 (2012). https://doi.org/10.1007/s11998-011-9382-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-011-9382-6

Keywords

Navigation