Skip to main content
Log in

Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The modification of human cancellous bone (hBONE) with silk fibroin/gelatin (SF/G) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccini-mide (NHS) crosslinking was established. The SF/G solutions at a weight ratio of 50/50 and the solution concentrations of 1, 2, and 4 wt % were studied. SF/G sub-matrix was formed on the surface and inside pore structure of hBONE. All hBONE scaffolds modified with SF/G showed smaller pore sizes, less porosity, and slightly lower compressive modulus than unmodified hBONE. SF/G sub-matrix was gradually biodegraded in collagenase solution along 4 days. The hBONE scaffolds modified with SF/G, particularly at 2 and 4 wt % solution concentrations, promoted attachment, proliferation, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSC), comparing to the original hBONE. The highest cell number, ALP activity and calcium production were observed for MSC cultured on the hBONE scaffolds modified with 4 wt % SF/G. The mineralization was also remarkably induced in the cases of modified hBONE scaffolds as observed from the deposited calcium phosphate by EDS. The modification of hBONE with SF/G was, therefore, the promising method to enhance the osteoconductive potential of human bone graft for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  CAS  Google Scholar 

  2. Newman JT, Smith WR, Ziran BH, Hasenboehler EA, Stahel PF, Morgan SJ. Efficacy of composite allograft and demineralized bone matrix graft in treating tibial plateau fractures with bone loss. Orthopedics. 2008;31:649.

    Google Scholar 

  3. Ozer K, Kiliç A, Sabel A, Ipaktchi K. The role of bone allografts in the treatment of angular malunions of the distal radius. J Hand Surg Am. 2011;36:1804–9.

    Article  Google Scholar 

  4. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res. 2000;1:38–45.

    Article  Google Scholar 

  5. Ziran BH, Hendi P, Smith WR, Westerheide K, Agudelo JF. Osseous healing with a composite of allograft and demineralized bone matrix: adverse effects of smoking. Am J Orthop. 2007;36:207–9.

    Google Scholar 

  6. Prasertsung I, Kanokpanont S, Bunaprasert T, Thanakit V, Damrongsakkul S. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater. 2008;85:210–9.

    Google Scholar 

  7. Jian YK, Tian XB, Li B, Qiu B, Zhou ZJ, Yang Z, Li QH. Properties of deproteinized bone for reparation of big segmental defect in long bone. Chin J Traumatol. 2008;11:152–6.

    Google Scholar 

  8. Nguyen H, Morgan DA, Forwood MR. Sterilization of allograft bone: is 25 kGy the gold standard for gamma irradiation? Cell Tissue Bank. 2007;8:81–91.

    Article  Google Scholar 

  9. Meyer SR, Nagendran J, Desai LS, Rayat GR, Churchill TA, Anderson CC, Rajotte RV, Lakey JRT, Ross DB. Decellularization reduces the immune response to aortic valve allografts in the rat. J Thorac Cardiovasc Surg. 2005;130:469–76.

    Article  Google Scholar 

  10. Ketonis C, Barr S, Adams CS, Hickok NJ, Parvizi J. Bacterial colonization of bone allografts: establishment and effects of antibiotics. Clin Orthop Relat Res. 2010;468:2113–21.

    Article  Google Scholar 

  11. Kang H, Wang F. The modified bone-patellar tendon-bone allograft in single-bundle anterior cruciate ligament reconstruction. Acta Orthop Belg. 2011;77:390–3.

    Google Scholar 

  12. Cieslik M, Nocoń J, Rauch J, Cieslik T, Ślósarczyk A, Borczuch-Łączka M, Owczarek A. Preparation of deproteinized human bone and its mixtures with bio-glass and tricalcium phosphate—innovative bioactive materials for skeletal tissue regeneration, tissue regeneration—from basic biology to clinical application. ISBN: 978-953-51-0387-5

  13. Ketonis C, Barr S, Shapiro IM, Parvizi J, Adams CS, Hickok NJ. Antibacterial activity of bone allografts: comparison of a new vancomycin-tethered allograft with allograft loaded with adsorbed vancomycin. Bone. 2011;48:631–8.

    Article  CAS  Google Scholar 

  14. Yamada H, Igarashi Y, Takasu Y, Saito H, Tsubouchi K. Identification of fibroin-derived peptides enhancing the proliferation of cultured human skin fibroblasts. Biomaterials. 2004;25:467–72.

    Article  CAS  Google Scholar 

  15. Moy RL, Lee A, Zalka A. Commonly used suture materials in skin surgery. Am Fam Phys. 1991;44:2123–8.

    Google Scholar 

  16. Liu H, Fan H, Wang Y, Toh SL, Goh JCH. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008;29:662–74.

    Article  CAS  Google Scholar 

  17. Lovett ML, Cannizzaro CM, Vunjak-Novakovic G, Kaplan DL. Gel spinning of silk tubes for tissue engineering. Biomaterials. 2008;29:4650–7.

    Article  CAS  Google Scholar 

  18. Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32:5773–81.

    Article  CAS  Google Scholar 

  19. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27:4434–42.

    Article  CAS  Google Scholar 

  20. Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012;8:2483–92.

    Article  CAS  Google Scholar 

  21. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    Article  CAS  Google Scholar 

  22. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  Google Scholar 

  23. Jetbumpenkul P, Amornsudthiwat P, Kanokpanont S, Damrongsakkul S. Balanced electrostatic blending approach: an alternative to chemical crosslinking of Thai silk fibroin/gelatin scaffold. Int J Biol Macromol. 2012;50:7–13.

    Article  CAS  Google Scholar 

  24. Chamchongkaset J, Kanokpanont S, Kaplan DL, Damrongsakkul S. Modification of Thai silk fibroin scaffolds by gelatin conjugation for tissue engineering. Adv Mater Res. 2008;55–57:685–8.

    Article  Google Scholar 

  25. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

    Article  CAS  Google Scholar 

  26. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res. 2001;54:139–48.

    Article  CAS  Google Scholar 

  27. Biman BM, Jasdeep KM, Kundu SC. Silk fibroin/gelatin multilayered films as a model system for controlled drug release. Eur J Pharm Sci. 2009;37:160–71.

    Article  Google Scholar 

  28. Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials. 2005;26:3587–96.

    Article  CAS  Google Scholar 

  29. Takahashi Y, Tabata Y. Homogeneous seeding of mesenchymal stem cells into nonwoven fabric for tissue engineering. Tissue Eng. 2003;9:931–8.

    Article  CAS  Google Scholar 

  30. Paull B, Macka M, Haddad PR. Determination of calcium and magnesium in water samples by high-performance liquid chromatography on a graphitic stationary phase with a mobile phase containing O-cresolphthalein complexone. J Chromatogr A. 1997;789:329–37.

    Article  CAS  Google Scholar 

  31. Okhawilai M, Rangkupan R, Kanokpanont S, Damrongsakkul S. Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications. Int J Biol Macromol. 2010;46:544–50.

    Article  CAS  Google Scholar 

  32. Tomihata K, Ikada Y. Cross-linking of gelatin with carbodiimides. Tissue Eng. 1996;2:307–13.

    Article  CAS  Google Scholar 

  33. Bloebaum RD, Bachus KN, Mitchell W, Hoffman G, Hofmann AA. Analysis of the bone surface area in resected Tibia. Implications in tibial component subsidence and fixation. Clin Orthop. 1994;309:2–10.

    Google Scholar 

  34. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  Google Scholar 

  35. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17:175–85.

    Article  CAS  Google Scholar 

  36. Yasuhiko T, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliver Rev. 1998;31:287–301.

    Article  Google Scholar 

  37. Vachiraroj N, Ratanavaraporn J, Damrongsakkul S, Pichyangkura R, Banaprasert T, Kanokpanont S. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. Int J Biol Macromol. 2009;45:470–7.

    Article  CAS  Google Scholar 

  38. Arpornmaeklong P, Suwatwirote N, Pripatnanont P, Oungbho K. Growth and differentiation of mouse osteoblasts on chitosan–collagen sponges. Int J Oral Maxillofac Surg. 2007;36:328–37.

    Article  CAS  Google Scholar 

  39. He G, Dahl T, Veisand A, George A. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect Tissue Res. 2003;44:240–5.

    CAS  Google Scholar 

  40. Li L, Buchet R, Wu Y. Dimethyl sulfoxide-induced hydroxyapatite formation: a biological model of matrix vesicle nucleation to screen inhibitors of mineralization. Anal Biochem. 2008;381:123–8.

    Article  CAS  Google Scholar 

  41. Jung HJ, Park K, Son JS, Kim JJ, Han DK. Hydroxyapatite formation on acrylic acid-grafted porous PLLA scaffolds in simulated body fluid. In: 3rd Kuala Lumpur international conference on biomedical

Download references

Acknowledgments

This research was supported by the Medical Association of Thailand and the Chulalongkorn University Centenary Academic Development Project. Kind supplies of human cancellous bone from Bangkok Biomaterial Center under the Patronage of H.R.H. Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra, Faculty of Medicine, Siriraj Hospital, and “Nangnoi Srisaket 1” cocoons from Queen Sirikit Sericulture Center, Nakhonratchasima province, Thailand, were acknowledged. We extend our thanks to Tanom Bunaprasert, M.D. for his support on the cell culture facilities at i-Tissue Laboratory, Faculty of Medicine, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriporn Damrongsakkul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorrapakdee, R., Kanokpanont, S., Ratanavaraporn, J. et al. Modification of human cancellous bone using Thai silk fibroin and gelatin for enhanced osteoconductive potential. J Mater Sci: Mater Med 24, 735–744 (2013). https://doi.org/10.1007/s10856-012-4830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4830-0

Keywords

Navigation