Skip to main content
Log in

Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polycaprolactone/hydroxyapatite (PCL/HA) composites were prepared by in situ generation of HA in the polymer solution starting from the precursors calcium nitrate tetrahydrate and ammonium dihydrogen phosphate via sol–gel process. Highly interconnected porosity was achieved by means of the salt-leaching technique using a mixture of sodium chloride and sodium bicarbonate as porogens. Structure and morphology of the PCL/HA composites were investigated by scanning electron microscopy, and mechanical properties were determined by means of tensile and compression tests. The possibility to employ the developed composites as scaffolds for bone tissue regeneration was assessed by cytotoxicity test of the PCL/HA composites extracts and cell adhesion and proliferation in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kweon H, Yoo M, Park I, Kim T, Lee H, Lee S, et al. A novel degradable polycaprolactone network for tissue engineering. Biomaterials. 2003;24:801–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bölgen N, Menceloglu YZ, Acatay K, Vargel I, Piskin E. In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J Biomater Sci Polym Ed. 2005;16(12):1537–55.

    Article  PubMed  Google Scholar 

  3. Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3–E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules. 2007;8:2602–10.

    Article  CAS  PubMed  Google Scholar 

  4. Marques AP, Reis RL. Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Mater Sci Eng C. 2005;25:215–29.

    Article  Google Scholar 

  5. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.

    Article  CAS  PubMed  Google Scholar 

  6. Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S, et al. Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res A. 2005;76A(1):151–62.

    Google Scholar 

  7. Guarino V, Causa F, Netti PA, Ciapetti G, Pagani S, Martini D, et al. The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration. J Biomed Mater Res B. 2008;86B(2):548–57.

    Article  CAS  Google Scholar 

  8. Heo SJ, Kim SE, Hyun YT, Kim DH, Lee HM, Hwang YM, et al. In vitro evaluation of poly ε-caprolactone/hydroxyapatite composite as scaffolds for bone tissue engineering with human bone marrow stromal cells. Key Eng Mater. 2007;342–343:369–72.

    Article  Google Scholar 

  9. Verma D, Katti K, Katti D. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. J Biomed Mater Res A. 2006;78A(4):772–80.

    Article  CAS  Google Scholar 

  10. Baji A, Wong SC, Srivatsan TS, Njus GO, Mathur G. Processing methodologies for polycaprolactone-hydroxyapatite composites: a review. Mater Manuf Process. 2006;20:211–8.

    Article  Google Scholar 

  11. Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite materials. J Mater Sci Mater Med. 2003;14:103–7.

    Article  CAS  PubMed  Google Scholar 

  12. Chen B, Sun K. Poly (ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005;24:64–70.

    Article  CAS  Google Scholar 

  13. Calandrelli L, Immirzi B, Malinconico M, Volpe M, Oliva A, Ragione F. Preparation and characterisation of composites based on biodegradable polymers for “in vivo” application. Polymer. 2000;41:8027–33.

    Article  CAS  Google Scholar 

  14. Helwid E, Sandner B, Gopp U, Vogt F, Wartewig S, Henning S. Ring-opening polymerization of lactones in the presence of hydroxyapatite. Biomaterials. 2001;22:2695–702.

    Article  Google Scholar 

  15. Marra KG, Szem J, Kumta P, Dimilla P, Weiss L. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res. 1999;47:324–35.

    Article  CAS  PubMed  Google Scholar 

  16. Kim HW. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res A. 2007;83A(1):169–77.

    Article  CAS  Google Scholar 

  17. Choi D, Marra KG, Kumta PN. Chemical synthesis of hydroxyapatite/poly(ε-caprolactone) composites. Mater Res Bull. 2004;39:417–32.

    Article  CAS  Google Scholar 

  18. Catauro M, Raucci MG, De Gaetano F, Marotta A. Sol–gel synthesis, characterization and bioactivity of polycaprolactone/SiO2 hybrid materials. J Mater Sci. 2003;38:3097–102.

    Article  CAS  Google Scholar 

  19. Catauro M, Raucci MG, De Gaetano F, Buri A, Marotta A, Ambrosio L. Sol–gel synthesis, structure and bioactivity of polycaprolactone/CaO·SiO2 hybrid materials. J Mater Sci Mater Med. 2004;15:991–5.

    Article  CAS  PubMed  Google Scholar 

  20. Hakimimehr D, Liu DM, Troczynski T. In situ preparation of poly(propylene fumarate)-hydroxyapatite composites. Biomaterials. 2005;26:7297–303.

    Article  CAS  PubMed  Google Scholar 

  21. Liou SC, Chen SY, Liu DM. Phase development and structural characterization of calcium phosphate ceramics-polyacrylic acid nanocomposites at room temperature in water-methanol mixtures. J Mater Sci Mater Med. 2004;15:1261–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yu H, Matthew HW, Wooley PH, Yang Y. Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites. J Biomed Mater Res B. 2008;86B(2):541–7.

    Article  CAS  Google Scholar 

  23. Bogdanoviciene I, Beganskiene A, Tõnsuaadu K, Glaser J, Meyer HJ, Kareiva A. Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Mater Res Bull. 2006;41:1754–62.

    Article  CAS  Google Scholar 

  24. Jones MM, Nyssen GA. Some new chelating polymers for toxic metals II. J Inorg Nucl Chem. 1978;40:1235–9.

    Article  CAS  Google Scholar 

  25. Bajpai UDN, Rai S, Bajpai A. Synthesis and characterization of poly(ethylene aspartate)-metal complexes. Polym Int. 1993;32(3):215–20.

    Article  CAS  Google Scholar 

  26. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  27. Xi J, Kong L, Gao Y, Zhao N, Zhang X. J Biomater Sci Polym Ed. 2005;16:1395–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Piero Narducci of the University of Pisa is gratefully acknowledged for the recording of the SEM images of the cells grown onto PCL/HA scaffolds. Dr. Ing. Andrea Dorigato of the Engineering Faculty at the University of Trento is also gratefully acknowledged for support in measuring the mechanical properties of the scaffolds in compression mode. Ms Giulia Bartalucci and Ms Sara Menozzi are acknowledged for support in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Fabbri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabbri, P., Bondioli, F., Messori, M. et al. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci: Mater Med 21, 343–351 (2010). https://doi.org/10.1007/s10856-009-3839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3839-5

Keywords

Navigation