Skip to main content
Log in

Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The fabrication process, compressive strength and biocompatibility of porous β-tricalcium phosphate (β-TCP) ceramic scaffolds reinforced with 45P2O5–22CaO–25Na2O–8MgO bioglass (β-TCP/BG) were investigated for their suitability as bone engineering materials. Porous β-TCP/BG scaffolds with macropore sizes of 200–500 μm were prepared by coating porous polyurethane template with β-TCP/BG slurry. The β-TCP/BG scaffolds showed interconnected porous structures and exhibited enhanced mechanical properties to those pure β-TCP scaffolds. In order to assess the effects of chemical composition of this bioglass on the behavior of osteoblasts cultured in vitro, porous scaffolds were immersed in simulated body fluid (SBF) for 2 weeks, and original specimens (without soaked in SBF) seeded with MC3T3-E1 were cultured for the same period. The ability of inducing apatite crystals in simulated body fluid and the attachment of osteoblasts were examined. Results suggest that apatite agglomerates are formed on the surface of the β-TCP/BG scaffolds and its Ca/P molar ratio is ~1.42. Controlling the crystallization from the β-TCP/BG matrix could influence the releasing speed of inorganic ions and further adjust the microenvironment of the solution around the β-TCP/BG, which could improve the interaction between osteoblasts and the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Langer, J.P. Vacanti, Science 260, 920 (1993). doi:10.1126/science.8493529

    Article  PubMed  CAS  ADS  Google Scholar 

  2. D.W. Hutmacher, Biomaterials 21, 2529 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. A.R. Boccaccini, V. Maquet, Compos. Sci. Technol. 63, 2417 (2003). doi:10.1016/S0266-3538(03)00275-6

    Article  CAS  Google Scholar 

  4. D.C. Tancred, A.J. Carr, B.A.O. Mccormack, J. Mater. Sci. Mater. Med. 12, 81 (2001). doi:10.1023/A:1026773522934

    Article  PubMed  CAS  Google Scholar 

  5. V.V. Silva, F.S. Lameiras, R.Z. Domingues, Compos. Sci. Technol. 61, 301 (2001). doi:10.1016/S0266-3538(00)00222-0

    Article  CAS  Google Scholar 

  6. W. Suchanel, M. Yashima, M. Kakihana, M. Yoshimura, Biomaterials 17, 1715 (1996). doi:10.1016/0142-9612(96)87652-6

    Article  Google Scholar 

  7. Y.K. Juna, H.K. Wan, O.K. Kweonb, S.H. Honga, Biomaterials 24, 3731 (2003). doi:10.1016/S0142-9612(03)00248-5

    Article  Google Scholar 

  8. V. Salih, A. Patel, J.C. Knowles, Biomed. Mater. 2, 11 (2007). doi:10.1088/1748-6041/2/1/003

    Article  PubMed  CAS  ADS  Google Scholar 

  9. T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161 (2003). doi:10.1016/S0142-9612(03)00044-9

    Article  PubMed  CAS  Google Scholar 

  10. R. Murugan, S. Ramakrishna, Mater. Lett. 58, 230 (2003). doi:10.1016/S0167-577X(03)00451-8

    Article  Google Scholar 

  11. T. Matsuno, M. Morita, K. Watanabe, K. Ono, M. Koishi, J. Mater. Sci. Mater. Med. 14, 247 (2003). doi:10.1023/A:1023464115384

    Article  Google Scholar 

  12. Towler, I.R. Gibson, S.M. Best, J. Mater. Sci. Lett. 19, 2209 (2000). doi:10.1023/A:1006752202731

    Article  CAS  Google Scholar 

  13. V. Salin, G. Georgiou, J.C. Knowles, I. Olsen, Biomaterials 22, 2817 (2001). doi:10.1016/S0142-9612(01)00026-6

    Article  Google Scholar 

  14. S. Langstaff, M. Sayer, T.J.N. Smith, S.M. Pugh, Biomaterials 22, 135 (2001). doi:10.1016/S0142-9612(00)00139-3

    Article  PubMed  CAS  Google Scholar 

  15. G. Goller, H. Demirkiran, F.N. Oktar, E. Demirkesen, Ceram. Int. 29, 72 (2003)

    Article  Google Scholar 

  16. O. Peital, E.D. Zanotto, L.L. Hench, J. Non-Cryst. Solids 292, 11 (2001)

    Google Scholar 

  17. M. Nagase, Y. Abe, M. Chigira, E. Udagawa, Biomaterials 13, 172 (1992)

    Article  PubMed  CAS  Google Scholar 

  18. M.H. Prado Da Silva, A.F. Lemos, I.R. Gibson, J.M.F. Ferreira, J. Non-Cryst. Solids 304, 286 (2002). doi:10.1016/S0022-3093(02)01036-0

    Article  CAS  ADS  Google Scholar 

  19. T. Kasuga, M. Sawada, M. Nogami, Y. Abe, Biomaterials 20, 1415 (1999). doi:10.1016/S0142-9612(99)00047-2

    Article  PubMed  CAS  Google Scholar 

  20. H.P. Yuan, J.D. De Bruijn, Y.B. Li, J. Qfeng, Z.J. Yang, K. De Groot et al., J. Mater. Sci. Mater. Med. 12, 7 (2001). doi:10.1023/A:1026792615665

    Article  PubMed  CAS  Google Scholar 

  21. K. Franks, I. Abrahams, G. Georgiou, J.C. Knowles, Biomaterials 22, 497 (2001). doi:10.1016/S0142-9612(00)00207-6

    Article  PubMed  CAS  Google Scholar 

  22. S.H. Rehee, Biomaterials 23, 1147 (2002). doi:10.1016/S0142-9612(01)00229-0

    Article  Google Scholar 

  23. E. Esposoto, R. Cortesi, C. Nastruzzi, Biomaterials 20, 2009 (1995)

    Google Scholar 

  24. Y. Otani, Y. Tabata, Y. Ikada, Biomaterials 19, 2091 (1998). doi:10.1016/S0142-9612(98)00121-5

    Article  PubMed  CAS  Google Scholar 

  25. J. Ando, S. Matsuno, Bull. Chem. Soc. Jpn. 41, 342 (1968). doi:10.1246/bcsj.41.342

    Article  CAS  Google Scholar 

  26. M. Jarco, R.L. Salabury, M.B. Thomas, R.H. Diremus, J. Mater. Sci. 14, 142 (1979). doi:10.1007/BF01028337

    Article  Google Scholar 

  27. N.C. Blumenthal, Clin. Orthop. Relat. Res. 248, 279 (1989)

    Google Scholar 

  28. R.L. Xin, Y. Leng, J.Y. Chen, Q.Y. Zhang, Biomaterials 26, 6477 (2005). doi:10.1016/j.biomaterials.2005.04.028

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to financial support of China Natural Science Foundation (Grant No. 50772072), Tianjin Natural Science Foundation (Grant No. 06YFJMJC02900) and Shanghai Science Foundation (Grant No. 07QA14069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, S., Xu, G.H., Yu, X.Z. et al. Fabrication and biological characteristics of β-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. J Mater Sci: Mater Med 20, 351–358 (2009). https://doi.org/10.1007/s10856-008-3591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3591-2

Keywords

Navigation