Skip to main content
Log in

Effect of the cooling rate in solidification on the electrical behavior of solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Solder is widely used for electrical interconnections in electronics, and its use involves the melting and subsequent solidification of the solder. This paper reports for the first time the effect of the cooling rate in solidification on the electrical behavior (conduction and dielectric behavior) of the solidified solder. Prior work addressed the effect of the cooling rate on the microstructure and mechanical properties only. The solder is Sn-4Ag (lead free, melting temperature 221 °C). Cooling is from the melt at 230 °C. Comparison of the cooling rates corresponding to air cooling and ice-water quenching indicates that the microstructure is much finer and the resistivity (DC) is higher by 2.4% for the quenching case. However, the permittivity (100 kHz) is the same for the two cooling rates. This means that the microstructural refinement associated with the quenching decreases the mobility without affecting the carrier–atom interaction responsible for the permittivity. The carriers are the valence electrons. Since the polarization associated with the permittivity involves the interaction of a fraction of the valence electrons with the atoms, this further implies that the fraction of carriers that interact with the atoms is not affected by the microstructural refinement and that the decrease in mobility (as indicated by the resistivity increase) does not affect this fraction. The fractional increase in the resistivity due to the quenching (relative to air cooling) during solidification (this work) is small compared to that due to the mild heating of the solid solder to 70 °C (our prior work). The mild heating also does not affect the permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and material are available by contacting the corresponding author.

References

  1. H. Lee, K. Huang, Effects of cooling rate on the microstructure and morphology of Sn-3.0Ag-0.5Cu solder. J. Electron. Mater. 45(1), 182–190 (2016)

    Article  CAS  Google Scholar 

  2. L. Snugovsky, P. Snugovsky, D.D. Perovic, J.W. Rutter, Effect of cooling rate on microstructure of Ag-Cu-Sn solder alloys. Mater. Sci. Technol. 21(1), 61–68 (2005)

    Article  CAS  Google Scholar 

  3. X. Wang, Y.C. Liu, C. Wei, L.M. Yu, Z.M. Gao, Z.Z. Dong, Effects of composition and cooling rate on the microstructure of Sn-3.7Ag-0.9Zn-Bi solders. Appl. Phys. A 96(4), 969–973 (2009)

    Article  CAS  Google Scholar 

  4. X. Li, F. Zu, W. Gao, X. Cui, L. Wang, G. Ding, Effects of the melt state on the microstructure of a Sn-3.5%Ag solder at different cooling rates. Appl. Surf. Sci. 258(15), 5677–5682 (2012)

    Article  CAS  Google Scholar 

  5. L.R. Garcia, W.R. Osorio, A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Des. 32(5), 3008–3012 (2011)

    Article  CAS  Google Scholar 

  6. F. Ochoa, J.J. Williams, N. Chawla, Effects of cooling rate on the microstructure and tensile behavior of a Sn-3.5wt.%Ag solder. J. Electron. Mater. 32(12), 1414–1420 (2003)

    Article  CAS  Google Scholar 

  7. F. Ochoa, J.J. Williams, N. Chawla, The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5Ag solder. JOM 55, 56–60 (2003)

    Article  CAS  Google Scholar 

  8. J. Shen, Y. Liu, Y. Han, H. Gao, C. Wei, Y. Yang, Effects of cooling rates on microstructure and microhardness of lead-free Sn-3.5%Ag solders. Trans. Nonferrous Metals Soc. China 16(1), 59–64 (2006)

    Article  CAS  Google Scholar 

  9. N. Murad, S.R. Aisha, M. Ishak, Effects of cooling rates on microstructure, wettability and strength of Sn3.8Ag0.7Cu solder alloy. Procedia Eng. 184, 266–273 (2017)

    Article  CAS  Google Scholar 

  10. J.G. Maveety, P. Liu, J. Vijayen, F. Hua, E.A. Sanchez, Effect of cooling rate on microstructure and shear strength of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-37Pb solders. J. Electron. Mater. 33(11), 1355–1362 (2004)

    Article  CAS  Google Scholar 

  11. K.S. Kim, S.H. Huh, K. Suganuma, Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys. Mater. Sci. Eng. A 333(1–2), 106–114 (2002)

    Article  Google Scholar 

  12. T.H. Chuang, L.C. Tsao, C. Chung, S.Y. Chang, Evolution of Ag3Sn compounds and microhardness of Sn3.5Ag0.5Cu nano-composite solders during different cooling rate and aging. Mater. Des. 39, 475–483 (2012)

    Article  CAS  Google Scholar 

  13. K.N. Prabhu, P. Deshapande, Satyanarayan, Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature. Mater. Sci. Eng. A 533, 64–70 (2012)

    Article  CAS  Google Scholar 

  14. E. Cadirli, H. Kaya, M. Sahin, Effects of cooling rate and composition on mechanical properties of directionally solidified Pb100-xSnx solders. J. Electron. Mater. 40(9), 1903–1911 (2011)

    Article  CAS  Google Scholar 

  15. R. Mahmudi, M. Pourmajidian, A.R. Geranmayeh, S. Gorgannejad, S. Hashemizadeh, Indentation creep of lead-free Sn-3.5Ag solder alloy: effects of cooling rate and Zn/Sb addition. Mater. Sci. Eng. A 565, 236–242 (2013)

    Article  CAS  Google Scholar 

  16. F. Ochoa, X. Deng, N. Chawla, Effects of cooling rate on creep behavior of a Sn-3.5Ag alloy. J. Electron. Mater. 33(12), 1596–1607 (2004)

    Article  CAS  Google Scholar 

  17. K. Wu, N. Wade, J. Cui, K. Miyahara, Microstructural effect on the creep strength of a Sn-3.5%Ag solder alloy. J. Electron. Mater. 32(1), 5–8 (2003)

    Article  CAS  Google Scholar 

  18. R. Mahmudi, A.R. Geranmayeh, H. Noori, N. Jahangiri, H. Khanbareh, Effect of cooling rate on the room-temperature impression. Mater. Sci. Eng. A 487(1–2), 20–25 (2008)

    Article  Google Scholar 

  19. E.S. Gouda, Effect of cooling rate on structure and creep behavior of Sn-0.7Cu-0.5Zn lead-free solder alloy. Eur. Phys. J. Appl. Phys. 48(2), 20902/p1-20902/p5 (2009)

    Article  CAS  Google Scholar 

  20. R. Mahmudi, A.R. Geranmayeh, S.R. Mahmoodi, A. Khalatbari, Effect of cooling rate on the room-temperature indentation creep of cast lead-free Sn-Bi solder alloys. Phys. Status Solidi A 204(7), 2302–2308 (2007)

    Article  CAS  Google Scholar 

  21. Z. Mei, J.W. Morris Jr., M.C. Shine, T.S.E. Summers, Effects of cooling rate on mechanical properties of near-eutectic tin-lead solder joints. J. Electron. Mater. 20(8), 599–608 (1991)

    Article  CAS  Google Scholar 

  22. M. Mueller, S. Wiese, M. Roellig, K. Wolter, Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints. IEEE Electronic ComponentsTechnol. Conf. 57th(Vol. 4), 1579–1588 (2007).

  23. M. He, Z. Chen, G. Qi, C.C. Wong, S.G. Mhaisalkar, Effect of post-reflow cooling rate on intermetallic compound formation between Sn-3.5 Ag solder and Ni-P under bump metallization. Thin Solid Films 462–463, 363–369 (2004)

    Article  CAS  Google Scholar 

  24. B. Chiou, J. Cheng, Effect of the cooling rate on the mechanical and electrical behavior of a 63Sn/37Pb solder bump on a metallized Si substrate. J. Mater. Sci. Mater. Electron. 5(4), 229–34 (1994)

    Article  CAS  Google Scholar 

  25. W. Yang, L.E. Felton, R.W. Messler Jr., The effect of soldering process variables on the microstructure and mechanical properties of eutectic Sn-Ag/Cu solder joints. J. Electron. Mater. 24(10), 1465–1472 (1995)

    Article  CAS  Google Scholar 

  26. J. Sigelko, S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler, Effect of cooling rate on microstructure and mechanical properties of eutectic Sn-Ag solder joints with and without intentionally incorporated Cu6Sn5 reinforcements. J. Electron. Mater. 28(11), 1184–1188 (1999)

    Article  CAS  Google Scholar 

  27. K. Hardinnawirda, A.M.Z. Akhtar, I.S.R. Aisha, I. Mahadzhir, A review on the effect of surface finish and cooling rate on solder joint reliability. WIT Trans. Built Environ. 166, 201–212 (2017)

    CAS  Google Scholar 

  28. P. Darbandi, T.R. Bieler, F. Pourboghrat, T. Lee, The effect of cooling rate on grain orientation and misorientation microstructure of SAC105 solder joints before and after impact drop tests. J. Electron. Mater. 43(7), 2521–2529 (2014)

    Article  CAS  Google Scholar 

  29. J.J. Sundelin, S.T. Nurmi, T.K. Lepistoe, E.O. Ristolainen, Mechanical and microstructural properties of SnAgCu solder joints. Mater. Sci. Eng. A 420(1–2), 55–62 (2006)

    Article  Google Scholar 

  30. D. Yao, J.K. Shang, Effect of cooling rate on interfacial fatigue-crack growth in Sn-Pb solder joints. IEEE Trans. Comp. Packag. Manuf. Technol. Part B 19(1), 154–165 (1996)

    Article  CAS  Google Scholar 

  31. H.A. Jaffery, M.F.M. Sabri, S. Rozali, M.H. Mahdavifard, D. Shnawah, Effect of temperature and alloying elements (Fe and Bi) on the electrical resistivity of Sn–0.7Cu solder alloy. RSC Adv. 6, 58010 (2016)

    Article  CAS  Google Scholar 

  32. A.K. Pal, P. Sen, Resistivity and temperature coefficient of resistivity of tin films. J. Mater. Sci. 12(7), 1472–1476 (1977)

    Article  CAS  Google Scholar 

  33. X. Xi, D.D.L. Chung, Piezoresistivity and piezoelectricity, dielectricity discovered in solder. J. Mater. Sci. Mater. Electron. 30(5), 4462–4472 (2019)

    Article  CAS  Google Scholar 

  34. W. Yang, D.D.L. Chung, Electric polarization and depolarization in solder, and their effects on electrical conduction. J. Mater. Sci.: Mater. Electronics, in press.

  35. W. Yang, D.D.L. Chung, Effect of temperature on the electrical conduction and dielectric behavior of solder. J. Mater. Sci.: Mater. Electronics, in press.

  36. X. Xi, D.D.L. Chung, Role of grain boundaries in the dielectric behavior of graphite. Carbon 173, 1003–1019 (2021)

    Article  CAS  Google Scholar 

  37. R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. Royal Soc. London 209(1097), 196–218 (1951)

    CAS  Google Scholar 

  38. R.E. Franklin, The structure of graphitic carbons. Acta. Crystallogr. 4, 253–261 (1951)

    Article  CAS  Google Scholar 

  39. D.D.L. Chung, Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. Int. J. Smart Nano Mater. (2020). https://doi.org/10.1080/19475411.2020.1843560

    Article  Google Scholar 

  40. A.A. Eddib, D.D.L. Chung, First report of capacitance-based self-sensing and in-plane electric permittivity of carbon fiber polymer-matrix composite. Carbon 140, 413–427 (2018)

    Article  CAS  Google Scholar 

  41. X. Xi, D.D.L. Chung, Piezoelectret-based and piezoresistivity-based stress self-sensing in steel beams under flexure. Sensors Actuators A 301, 111780 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by New York State Department of Economic Development via New York State Center of Excellence for Materials Informatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Ethics declarations

Conflict of interest

Yang and Chung declares that they has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Chung, D.D.L. Effect of the cooling rate in solidification on the electrical behavior of solder. J Mater Sci: Mater Electron 32, 7867–7874 (2021). https://doi.org/10.1007/s10854-021-05511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05511-7

Navigation