Skip to main content
Log in

Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Undoped and Co doped Cu2O (Cu2−xCoxO; x = 0, 1, 2, 5 and 10) thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction technique. The variation in the concentration of Co shows significant impact on the film properties, where as doped with 10 wt% of Co exhibited major property improvements when compared with other films. The prepared films were characterized for their structural, morphological, optical and magnetic properties. X-ray diffraction analysis of the films revealed the crystalline growth of Cu2−xCoxO films. The substitution of Cu2+ by Co2+ ions has led to a single phase cubic structure highly oriented along (111) plane. Optical studies (photoluminescence and UV–vis–NIR) of the films exhibit the quality of the films with the increase of dopant. The stretching vibrations of Cu–O and O–Cu–O have been confirmed by Fourier transform infrared spectroscopy. The morphological study done by a field emission scanning electron microscope has shown as increase of particle size with increase in the dopant concentration. High resolution of transition electron microscope and particle analyzer verified the nano-size and shape of the films. The presence of copper in the structure of thin film was confirmed by energy dispersive X-ray spectrometer. Magnetic measurements showed that undoped and minimum doped (1 and 2 wt%) films exhibit diamagnetic behavior and at the maximum (10 wt%) Co doping level, the films exhibit ferromagnetic properties. Current verses voltage studies showed the ohmic nature of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013)

    Article  Google Scholar 

  2. S.L. Mammah, F.E. Opara, V.B. Omubo-Pepple, J.E.-E. Ntibi, S.C. Ezugwu, F.I. Ezema, Nat. Sci. 5, 389 (2013)

    Google Scholar 

  3. L.-C. Chen, Mater. Sci. Semicond. Process. 16, 1172 (2013)

    Article  Google Scholar 

  4. L. Zhang, L. McMillon, J. McNatt, Sol. Energy Mater. Sol. Cells 108, 230 (2013)

    Article  Google Scholar 

  5. F. Bayansal, T. TasKoPru, B. Sahin, H.A. Cetinkara, Miner. Met. Mater. Soc. ASM. Int. (2014). doi:10.1007/s11661-014-2306-1

    Google Scholar 

  6. G. Fan, F. Li, Chem. Eng. J. 167, 388 (2011)

    Article  Google Scholar 

  7. H.S. Lim, D. Kwak, D.Y. Lee, K. Cho, J. Am. Chem. Soc. 129, 4128 (2007)

    Article  Google Scholar 

  8. P.A. Praveenjanantha, L.N.L. Perera, K.M.D.C. Jayathilaka, J.K.D.S. Jayanetti, D.P. Dissanayaka, W.P. Siripala, Process. Tech. Sess. 25, 70 (2009)

    Google Scholar 

  9. V. Georgieva, M. Ristov, Sol. Energy Mater. Sol. Cells 73, 67 (2002)

    Article  Google Scholar 

  10. K. Han, M. Tao, Sol. Energy Mater. Sol. Cells 93, 153 (2009)

    Article  Google Scholar 

  11. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547 (2004)

    Article  Google Scholar 

  12. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  13. Y. Ghayeb, M.M. Momeni, A. Mozafari, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5321-8

    Google Scholar 

  14. M.M. Momeni, Indian J. Chem. 55A, 686 (2016)

    Google Scholar 

  15. M.M. Momeni, I. Ahadzadeh, Mater. Res. Innov. 20, 44 (2016)

    Article  Google Scholar 

  16. M.M. Momeni, Y. Ghayeb, Z. Ghonchegi, Ceram. Int. 41, 8735 (2015)

    Article  Google Scholar 

  17. M.M. Momeni, M. Mirhosseini, M. Chavoshi, A. Hakimizade, J. Mater. Sci. Mater. Electron. 27, 3941 (2016)

    Article  Google Scholar 

  18. M.M. Momeni, M. Hakimian, A. Kazempour, Ceram. Int. 41, 13692 (2015)

    Article  Google Scholar 

  19. S.N. Kale, S.B. Ogale, S.R. Shinde, M. Sahasrabuddhe, V. Kulkarni, R. Greene, T. Venkatesan, Appl. Phys. Lett. 82, 2100 (2003)

    Article  Google Scholar 

  20. M. Beekmana, J. Salvadorb, X. Shic, G.S. Nolasa, J. Yangb, J. Alloys Compd. 489, 336 (2010)

    Article  Google Scholar 

  21. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, Chem. Commun. 12, 1069 (1999)

    Article  Google Scholar 

  22. T.-L. Li, Y.-L. Lee, H. Teng, J. Energy Environ. Sci. 5, 5315 (2012)

    Article  Google Scholar 

  23. H.Y. Xu, C. Chen, L. Xu, J.K. Dong, Thin Solid Films 527, 76 (2013)

    Article  Google Scholar 

  24. M.M. Momeni, Y. Ghayeb, Appl. Phys. A 122, 620 (2016)

    Article  Google Scholar 

  25. M.M. Momeni, M. Hakimian, A. Kazempour, Surf. Eng. 32, 514 (2016)

    Article  Google Scholar 

  26. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Alloys Compd. 637, 393 (2015)

    Article  Google Scholar 

  27. M.M. Momeni, Y. Ghayeb, J. Solid State Electrochem. 20, 683 (2016)

    Article  Google Scholar 

  28. M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 3318 (2016)

    Article  Google Scholar 

  29. M.M. Momeni, Mater. Res. Innov. 20, 317 (2016)

    Article  Google Scholar 

  30. S.H. Jeong, E.S. Aydil, J. Cryst. Growth 311, 4188 (2009)

    Article  Google Scholar 

  31. X. Yu, X. Li, G. Zheng, Y. Wei, A. Zhang, B. Yao, Appl. Surf. Sci. 270, 340 (2013)

    Article  Google Scholar 

  32. M. Vila, C. Díaz-Guerra, J. Piqueras, J. Phys. D Appl. Phys. 43, 135403 (2010). doi:10.1088/0022-3727/43/13/135403

    Article  Google Scholar 

  33. Q. Zhang, W. Fan, L. Gao, Appl. Catal. B 76, 168 (2007)

    Article  Google Scholar 

  34. G.B. Dong, M. Zhang, W. Lan, P.M. Dong, X.P. Zhao, H. Yan, J. Mater. Sci. Mater. Electron. 20, 193 (2009)

    Article  Google Scholar 

  35. A.N. Banerjee, S. Nandy, C.K. Ghosh, K.K. Chattooadhyay, Thin Solid Films 515, 7324 (2007)

    Article  Google Scholar 

  36. M.M. Momeni, M. Mirhosseini, M. Chavoshi, Ceram. Int. 42, 9133 (2016)

  37. M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691 (2016)

    Article  Google Scholar 

  38. M. Abdel Rafea, N. Roushdy, J. Phys. D: Appl. Phys. 42, 015413 (2008)

    Article  Google Scholar 

  39. M.M. Momeni, A.A. Mozafari, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5163-4

    Google Scholar 

  40. M.M. Momeni, Y. Ghayeb, A.A. Mozafari, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-5240-8

    Google Scholar 

  41. A. Vasuhi, R. John Xavier, R. Chandramohan, S. Muthkumaran, K. Dhanabalan, M. Ashokkumar, P. Parameswaren, J. Mater. Sci. Mater. Electron. 25, 824 (2014)

    Article  Google Scholar 

  42. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)

    Article  Google Scholar 

  43. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Electron. Mater. 45, 3612 (2016)

    Article  Google Scholar 

  44. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474 (2016)

    Article  Google Scholar 

  45. V. Senthamilselvi, K. Saravanakumar, R. Anandhi, A.T. Ravichandran, K. Ravichandran, Optoelectron. Adv. Mater. Rapid Commun. 5, 1072 (2011)

    Google Scholar 

  46. P.-H. Hsieh, Y.-M. Lu, W.-S. Hwang, J.-J. Yeh, W.-L. Jang, Surf. Coat. Technol. 205, S206 (2010)

    Article  Google Scholar 

  47. M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 43 (2015)

    Article  Google Scholar 

  48. M.M. Momeni, Y. Ghayeb, J. Appl. Electrochem. 45, 557 (2015)

    Article  Google Scholar 

  49. M.M. Momeni, Y. Ghayeb, M. Davarzadeh, J. Electroanal. Chem. 739, 149 (2015)

    Article  Google Scholar 

  50. M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015)

    Article  Google Scholar 

  51. S. Wang, H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang, J. Solid State Chem. 182, 1088 (2009)

    Article  Google Scholar 

  52. N. Ekthammathat, T. Thongtem, S. Thongtem, Appl. Surf. Sci. 277, 211 (2013)

    Article  Google Scholar 

  53. R.P. Pal Singh, I.S. Hudiara, S. Panday, P. Kumar, S.B. Rana, Int. J. Nanoelectron. Mater. 9, 1 (2016)

    Google Scholar 

  54. A.T. Ravichandran, K. Dhanabalan, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi, B. Muralidharan, Acta Metall. Sin. (Engl. Lett.) 28, 1041 (2015)

    Article  Google Scholar 

  55. K. Maaz, A. Mumtaz, S.K. Hasanian, A. Ceylan, J. Magn. Magn. Mater. 308, 289 (2007)

    Article  Google Scholar 

  56. D.P. Joseph, T.P. David, S.P. Raja, C. Venkateswaran, Mater. Charact. 59, 1137 (2008)

    Article  Google Scholar 

  57. J. Antony, Y. Qiang, M. Faheem, D. Meyer, D.E. McCready, M.H. Engelhard, Appl. Phys. Lett. 90, 013106 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Our special thanks to Dr. R. Chandramohan, Principal, Sree Sevugan Annamalai College, Devakottai, Tamilnadu, India, for his kind encouragement. The Principal author A. T. Ravichandran thanks, UGC-MRP: F.No 41-937/2012(SR), New Delhi for the partial funding of the work through a major research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Ravichandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanabalan, K., Ravichandran, A.T., Ravichandran, K. et al. Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique. J Mater Sci: Mater Electron 28, 4431–4439 (2017). https://doi.org/10.1007/s10854-016-6072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6072-2

Keywords

Navigation