Skip to main content
Log in

Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

After our discovery of room temperature ferromagnetism in the (Co, Ni) co-doped SnO2 nanoparticles by co-precipitation method, we successfully annealed all (Co, Ni) co-doped SnO2 diluted magnetic nanoparticles in air at 800 °C. The effect of annealing on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 diluted magnetic nanoparticles was investigated. The as-synthesized (Co, Ni) co-doped SnO2 nanoparticles were annealed in air at 800 °C for 2 h in an electric furnace. The dielectric constant and dielectric loss values of all (Co, Ni) co-doped SnO2 samples decrease whereas, the electrical conductivity value increased with an increase in Ni co-doped concentration. Room temperature ferromagnetic behavior was observed in (Co, Ni) co-doped SnO2 samples. Increasing the Ni content up to 2 % leads to an increase ferromagnetic behavior and beyond that the ferromagnetic behavior decreased. A comparative study shows that (Co, Ni) co-doped SnO2 nanoparticles annealed in air at 800 °C have an excellent dielectric, magnetic properties and higher electrical conductivity than that of the (Co, Ni) co-doped SnO2 annealed in air at 600 °C, indicating that these nanoparticles can be used for high frequency devices, ultrahigh dielectric materials and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyou, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    Article  Google Scholar 

  2. R. Janisch, N.A. Spaldin, Understanding ferromagnetismin Co-doped TiO2 anatase from first principles. Phys. Rev. B. 73, 035201 (2006)

    Article  Google Scholar 

  3. H. Liu, X. Cheng, H. Liu, J. Yang, Y. Liu, X. Liu, M. Gao, M. Wei, X. Zhang, Y. Jiang, Structural, optical and magnetic properties of Cu and V co-doped ZnO nanoparticles. Phys. E-Low-Dimens. Syst. Nanostructures 47, 5–27 (2013)

    Google Scholar 

  4. H. Jiang, X.F. Liu, Z.Y. Zou, Z.B. Wu, B. He, R.H. Yu, The effect of surfactants on the magnetic and optical properties of Co-doped SnO2 nanoparticles. Appl. Surf. Sci. 258, 236–241 (2011)

    Article  Google Scholar 

  5. B. Choudhury, A. Choudhury, Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle. Curr. Appl. Phys. 13, 1025–1031 (2013)

    Article  Google Scholar 

  6. K.S. Burch, D.D. Awschalom, D.N. Basov, Optical properties of III–Mn–V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008)

    Article  Google Scholar 

  7. I. Zutic, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  8. J. Hays, A. Punnoose, M. Engelhard, J. Peloquin, K. Reddy, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72, 054402 (2005)

    Article  Google Scholar 

  9. K. Nomura, C.A. Barrero, J. Sakuma, M. Takeda, Room-temperature ferromagnetism of sol–gel-synthesized Sn1−x Fe x 57O2−δ powders. Phys. Rev. B 75, 184411 (2007)

    Article  Google Scholar 

  10. V. Bilovol, A.M.M. Navarro, C.E.R. Torres, F.H. Sanchez, A.F. Cabrera, Magnetic and structural study of Fe doped tin dioxide. Phys. B 404, 2834–2837 (2009)

    Article  Google Scholar 

  11. L. Fang, X. Zu, C. Liu, Z. Li, G. Peleckis, S. Zhu, H. Liu, L. Wang, Microstructure and magnetic properties in Sn1−x Fe x O2 (x = 0.01, 0.05, 0.10) nanoparticles synthesized by hydrothermal method. J. Alloys Compd. 491, 679–699 (2010)

    Article  Google Scholar 

  12. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Thurber, A. Punnoose, A variable temperature Fe3 + electron paramagnetic resonance study of Sn1−xFexO2(0.00 ≤ x≤0.05). J. Appl. Phys. 101, 09H120 (2007)

    Article  Google Scholar 

  13. C. Van Komen, A. Punnoose, M.S. Seehra, Transition from n-type to p-type destroys ferromagnetism in semiconducting Sn1−xCoxO2 and Sn1−xCrxO2 nanoparticles. Solid States Commun. 149, 2257–2259 (2009)

    Article  Google Scholar 

  14. J.M. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332 (2004)

    Article  Google Scholar 

  15. A. Punnoose, J. Hays, Possible metamagnetic origin of ferromagnetism in transition-metal-doped SnO2. J. Appl. Phys. 97, 10D321–3 (2005)

    Article  Google Scholar 

  16. W. Wang, Z. Wang, Y. Hong, J. Tang, M. Yu, Structure and magnetic properties of Cr/Fe-doped SnO2 thin films. J. Appl. Phys. 99, 08M115 (2006)

    Google Scholar 

  17. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO(2-delta). Phys. Rev. Lett. 91, 077205 (2003)

    Article  Google Scholar 

  18. J.M.D. Coey, P. Stamenov, R.D. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials. New J. Phys. 12, 053025 (2010)

    Article  Google Scholar 

  19. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)

    Article  Google Scholar 

  20. C.W. Zhang, P. Wang, F. Li, First-principles study on surface magnetism in Co-doped (110) SnO2 thin film. Solid State Sci. 13, 1608–1611 (2011)

    Article  Google Scholar 

  21. F. Bouamra, A. Boumeddiene, M. Rerat, H. Belkhir, First principles calculations of magnetic properties of Rh-dope SnO2(1 1 0) surfaces. Appl. Surf. Sci. 269, 41–44 (2013)

    Article  Google Scholar 

  22. G. Rahman, V.M.G. Suarez, Surface-induced magnetism in C-doped SnO2. Appl. Phys. Lett. 96, 052508 (2010)

    Article  Google Scholar 

  23. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci.: Mater. Electron. 25, 730–735 (2014)

    Google Scholar 

  24. R. Khan, Zulfiqar, S. Fashu, Y. Zaman, Magnetic and dielectric properties of (Co, Zn) co-doped SnO2 diluted magnetic semiconducting nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 5960–5966 (2016). doi:10.1007/s10854-016-4517-2

    Google Scholar 

  25. P. Mohanapriya, R. Pradeepkumar, N. Jaya, T. Natarajan, Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl. Phys. Lett. 105, 022406 (2014)

    Article  Google Scholar 

  26. D. Toloman, A. Popa, O. Raita, M. Stan, R. Suciu, M.O. Miclaus, A.R. Biris, Luminescent properties of vanadium-doped SnO2 nanoparticles. Opt. Mater. 37, 223–228 (2014)

    Article  Google Scholar 

  27. P. Song, Q. Wang, Z. Yang, Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres. Sens. Actuators, B 173, 839–846 (2012)

    Article  Google Scholar 

  28. P.G. Li, X. Guoa, X.F. Wangb, W.H. Tanga, Synthesis, photoluminescence and dielectric properties of O-deficient SnO2 nanowires. J. Alloys Compd. 479, 74 (2009)

    Article  Google Scholar 

  29. D. Calestani, M. Zha, A. Zappettini, L. Lazzarino, G. Salviati, Structural and optical study of SnO2 nanobelts and nanowires. Mater. Sci. Eng., C 25, 625 (2005)

    Article  Google Scholar 

  30. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 (2005)

    Article  Google Scholar 

  31. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  32. W. Shochley, W.T. Read, Statistics of recombination of holes and electrons. Phys. Rev. 87, 835 (1952)

    Article  Google Scholar 

  33. N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Phys. Status Solidi A 59, 323 (1980)

    Article  Google Scholar 

  34. A. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  35. S. Mehraj, M.S. Ansari, Alimuddin, Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior. Phys. B: Condens. Matter 430, 106–113 (2013)

    Article  Google Scholar 

  36. X. Chou, J. Zhai, H. Jiang, X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106 (2007)

    Article  Google Scholar 

  37. R. Khan, Zulfiqar, Y. Zaman, Effect of annealing on structural, dielectric, transport and magnetic properties of (Zn, Co) co doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 4003–4010 (2016)

    Google Scholar 

  38. H. Zhang, D. Wang, V. Hu, X. Kang, H. Liu, Synthesis and magnetic properties of Sn1−xCoxO2 nanostructures and their application in gas sensing. Sens. Actuators, B 184, 288–294 (2013)

    Article  Google Scholar 

  39. X. Liu, J. Iqbal, Z. Wu, B. He, R. Yu, Structure and room-temperature ferromagnetism of Zn-doped SnO2 nanorods prepared by solvothermal method. J. Phys. Chem. C 114, 4790 (2010)

    Article  Google Scholar 

  40. K. Nomura, J. Okabayashi, K. Okamura, Y. Yamada, Magnetic properties of Fe and Co codoped SnO2 prepared by sol–gel method. J. Appl. Phys. 110, 083901 (2011)

    Article  Google Scholar 

  41. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4759-z

    Google Scholar 

  42. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagneticoxides. Nat. Mater. 4, 173–179 (2005)

    Article  Google Scholar 

  43. K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers, D.R. Gamelin, Direct kinetic correlation of carriers and ferromagnetism in Co2+: ZnO. Phys. Rev. Lett. 97, 037203 (2006)

    Article  Google Scholar 

  44. N.H. Hong, J. Sakai, N.T. Huong, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films. Phys. Rev. B 72, 045336 (2005)

    Article  Google Scholar 

  45. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Rajwali Khan and Zulfiqar would like to thank to the Department of Physics, Zhejiang University China; and Harare Institute of Technology, Harare, Zimbabwe for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajwali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Zulfiqar, Rahman, MU. et al. Effect of air annealing on the structure, dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J Mater Sci: Mater Electron 27, 10532–10540 (2016). https://doi.org/10.1007/s10854-016-5144-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5144-7

Keywords

Navigation