Skip to main content
Log in

Impact of post deposition annealing in O2 ambient on structural properties of nanocrystalline hafnium oxide thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, HfO2 thin film (100 nm) has been deposited by sputtering technique and annealed at various temperatures ranging from 400 to 1000 °C (in step of 200 °C) in O2 ambient for 10 min. The samples have been characterized using XRD, FTIR, EDAX, AFM and Laser Ellipsometer. The impact of annealing temperatures in O2 ambient on structural properties such as crystallite size, phase, orientation, stress have been studied using XRD. The Hf–O phonon peaks in the infrared absorption spectrum are detected at 512, 412 cm−1. The stretching vibration modes at 720 and 748 cm−1 correspond to HfO2. AFM data show mean grain size in the range of 38–67 nm. The film reveals variation in structural properties, which appears to be responsible for variation in oxygen percentage, refractive index (1.96–2.01) at 632 nm wavelength and roughness (6.13–16.40 nm). Annealing temperature as well as ambient condition has significant effects on stress, crystal size and thus the arrangement of atoms. For good quality film, annealing temperature larger than 600 °C is desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Vargas, N.R. Murphy, C.V. Ramana, Opt. Mater. (2014). doi:10.1016/j.optmat.2014.08.005

    Google Scholar 

  2. K.K. Bharathi, N.R. Kalidindi, C.V. Ramana, J. Appl. Phys. (2010). doi:10.1063/1.3499325

    Google Scholar 

  3. A. Cantas, G. Aygun, R. Tarun, Appl. Surf. Sci. (2014). doi:10.1016/j.apsusc.2014.03.077

    Google Scholar 

  4. A. Srivastava, R.K. Nahar, C.K. Sarkar, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-010-0230-8

    Google Scholar 

  5. Y. Zhang, K. Onodera, R. Maeda, Jpn. J. Appl. Phys. (2006). doi:10.1143/JJAP.45.300

    Google Scholar 

  6. Y. Zhang, L. Jian, K. Onodera, R. Maeda, Sens. Actuators A (2007). doi:10.1016/j.sna.2007.02.005

    Google Scholar 

  7. J. Tsaur, K. Onodera, T. Kobayashi, Z.J. Wang, S. Heisig, R. Maeda, T. Suga, Sens. Actuators A Phys. (2005). doi:10.1016/j.sna.2005.01.026

    Google Scholar 

  8. X.J. He, Z.Q. Lv, B. Liu, Z.H. Li, Sens. Actuators A (2012). doi:10.1016/j.sna.2012.03.013

    Google Scholar 

  9. Q. Fang, J.-Y. Zhang, Z. Wang, M. Modreanu, B.J. O’Sullivan, P.K. Hurley, T.L. Leedham, D. Hywel, M.A. Audier, C. Jimenez, J.-P. Senateur, I.W. Boyd, Thin Solid Films (2004). doi:10.1016/j.tsf.2003.11.186

    Google Scholar 

  10. R. Thielsch, A. Gatto, J. Heber, N. Kraiser, Thin Solid Films (2002). doi:10.1016/S0040-6090(02)00208-0

    Google Scholar 

  11. G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, L.D. Zhang, Surf. Sci. (2005). doi:10.1016/j.susc.2004.11.042

    Google Scholar 

  12. O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, J. Phys. D Appl. Phys. (2010). doi:10.1088/0022-3727/43/5/055402

    Google Scholar 

  13. J. Zhu, Z.G. Liu, Y. Feng, J. Phys. D Appl. Phys. (2003). doi:10.1088/0022-3727/36/23/028

    Google Scholar 

  14. M.J. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC Press, Boca Raton, 2002)

    Google Scholar 

  15. R.K. Nahar, V. Singh, Microelectron. Int. Int. J. (2010). doi:10.1108/13565361011034777

    Google Scholar 

  16. S. Hall, O. Buiu, I.Z. Mitrovic, Y. Lu, W.M. Davey, J. Telecommun. Inf. Technol. 2, 33–43 (2007)

  17. K.V.L.V. Narayanachari, H. Chandrasekar, A. Banerjee, K.B.R. Varma, R. Ranjan, N. Bhat, S. Raghavan, Condens. Matter Mater. Sci. (2015) arXiv preprint arXiv:1503.08299

  18. K.V.L.V. Narayanachariand, S. Raghavan, J. Appl. Phys. (2012). doi:10.1063/1.4757924

    Google Scholar 

  19. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall Inc., Englewood Cliffs, 2001)

    Google Scholar 

  20. S.K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R.R. Bhatia, Appl. Surf. Sci. (2013). doi:10.1016/j.apsusc.2012.10.113

    Google Scholar 

  21. M.C. Cisneros-Morales, C.R. Aita, Appl. Phys. Lett. (2010). doi:10.1063/1.3428965

    Google Scholar 

  22. Joint Committee on Powder Diffraction Standards Card No. 78-0050

  23. D.A. Neumayer, E. Cartier, J. Appl. Phys. (2001). doi:10.1063/1.1382851

    Google Scholar 

  24. M. Toledano-Luque, E. San Andres, A. del Prado, I. Martil, M.L. Lucia, G. Gonzalez-Diaz, J. Appl. Phys. (2007). doi:10.1063/1.2769959

    Google Scholar 

  25. D.A. Neumayer, E. Cartier, J. Appl. Phys. (2001). doi:10.1063/1.1382851

    Google Scholar 

  26. G. He, L.D. Zhang, Q. Fang, J. Appl. Phys. (2006). doi:10.1063/1.2361161

    Google Scholar 

  27. G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, R.S. Urdahl, Appl. Phys. Lett. (1998). doi:10.1063/1.122191

    Google Scholar 

  28. T.C. Chen, C.Y. Peng, C.H. Tseng, M.H. Liao, M.H. Chen, C.I. Wu, M.Y. Chern, P.J. Tzeng, C.W. Liu, IEEE Trans. Electron. Devices (2007). doi:10.1109/TED.2007.892012

    Google Scholar 

  29. G. Aygun, I. Yildiz, J. Appl. Phys. (2009). doi:10.1063/1.3153953

    Google Scholar 

  30. J.C. Hackley, T. Gougousi, Thin Solid Films (2009). doi:10.1016/j.tsf.2009.04.033

    Google Scholar 

  31. F.L. Martinez, M. Toledano-Luque, J.J. Gandia, J. Carabe, W. Bohne, J. Rohrich, E. Strub, I. Martil, J. Phys. D Appl. Phys. (2007). doi:10.1088/0022-3727/40/17/037

    Google Scholar 

  32. M. Ramzan, A.M. Rana, E. Ahmed, M.F. Wasiq, A.S. Bhatti, M. Hafeez, A. Ali, M.Y. Nadeem, Mater. Sci. Semicond. Process. (2015). doi:10.1016/j.mssp.2014.12.079

    Google Scholar 

  33. C.Y. Ma et al., Thin Solid Films (2013). doi:10.1016/j.tsf.2013.08.068

    Google Scholar 

  34. B. Deng et al., J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-2144-3

    Google Scholar 

  35. G. He et al., Surf. Sci. (2005). doi:10.1016/j.susc.2004.11.042

    Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Chandershekhar, Ex-Director, CSIR-CEERI, Pilani for giving me the opportunity to carry out the research work at CSIR-CEERI Pilani. I sincerely thank Mr. Triloki, Senior Researcher, BHU, Varansai for his invaluable guidance and help. I also express my thanks to Mr. Ashok, Technical Assistant, Banasthali University, Banasthali and Mr. Sanjeev Kumar, Scientist, CSIR-CEERI Pilani, for carrying out XRD and AFM experiment, respectively. The authors acknowledge the financial assistance under network Project-PSC0201, Council of Scientific and Industrial Research (CSIR). Author is grateful to HRDG, CSIR, for granting Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Kothari, P., Sharma, S.K. et al. Impact of post deposition annealing in O2 ambient on structural properties of nanocrystalline hafnium oxide thin film. J Mater Sci: Mater Electron 27, 7055–7061 (2016). https://doi.org/10.1007/s10854-016-4663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4663-6

Keywords

Navigation