Skip to main content
Log in

Influence of low energy ion irradiation on oxygen deficient hafnium oxide (HfO2) thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Changes in various properties of Hafnium Oxide (HfO2) high k-dielectric thin films, grown on Silicon (Si) substrate by 500 cycles and 1000 cycles of Atomic Layer Deposition (ALD) technique; having nominal thickness of around 50 nm and 120 nm were studied as a function of Low Energy Ion Beam (LEIB) irradiation. In this article, we have attentively studied (i) 350 keV Xe for 50 nm films and (ii) 275 keV Ne and 450 keV Kr for 120 nm films LEIB irradiation defect induced modifications in HfO2 thin films. The pristine and irradiated films were studied by various techniques. The variation of grain size as a function of low energy ion irradiation was measured by Field Emission Scanning Electron Microscopy (FESEM) while the substantial Root Mean Square (RMS) surface roughness and particle size distribution was measured by Atomic Force Microscopy (AFM). Structural changes studied using X-Ray Diffraction (XRD) revealed the change of state from amorphous to crystalline nature of the films for thickness < 100 nm while the samples with thickness > 100 nm changed from monoclinic crystal phase to orthorhombic. Systematic X-Ray Photoelectron Spectroscopy (XPS) study showed that deposited films are highly oxygen deficient (HfOx<2) and post-irradiation of films at high energy, having thickness > 120 nm, the films underwent complete oxidation leading to the formation of a new carbon compound CxHfyOz. Relative study of < 100 nm and > 100 nm films showed that, the 50 nm films has low resistivity compared to 120 nm thick films. So, films > 100 nm can be used in a Metal Oxide Semiconductor (MOS) device to reduce the leakage current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data can be made available on reasonable request.

References

  1. B. Schmidt, K. Wetzig, Ion-Solid Interactions, Ion Beams in Materials Processing and Analysis (Springer, Vienna, 2012). https://doi.org/10.1007/978-3-211-99356-9_2

    Chapter  Google Scholar 

  2. A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 71301 (2010)

    Article  Google Scholar 

  3. J. Singh, H. Gupta et al., Mater. Sci. Semicond. Process. 108, 104885 (2020)

    Article  CAS  Google Scholar 

  4. S.O. Kucheyev, J.S. Williams, C. Jagadish et al., Phys. Rev. B—Condens. Matter Mater. Phys. 67, 94115 (2003)

    Article  Google Scholar 

  5. J. Singh, R.G. Singh et al., Org. Electron. 87, 105932 (2020)

    Article  CAS  Google Scholar 

  6. D.K. Avasthi, G.K. Mehta, Mater. Sci. 145, 47 (2011)

    Google Scholar 

  7. W.J. Weber, E. Wendler, Modelling Effects of Radiation Damage, in Ion Beam Modification of Solids, vol. 61, ed. by W. Wesch, E. Wendler (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-33561-2_3

    Chapter  Google Scholar 

  8. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010)

    Article  CAS  Google Scholar 

  9. H. Wiedemann, Springer Cham 4, 3 (2015)

    Article  Google Scholar 

  10. K. Jin, Y. Zhang, W.J. Weber, Synergistic effects of nuclear and electronic energy deposition on damage production in KTaO3. Mater. Res. Lett. 6, 531 (2018)

    Article  CAS  Google Scholar 

  11. S.K. Singh, R. Singhal, Nucl. Instrum. Methods Phys. Res., Sect. B 407, 118 (2017)

    Article  CAS  Google Scholar 

  12. P. Kumar, K. Mal, S. Kumar, I. Sulania, Surf. Interface Anal. 48, 969 (2016)

    Article  CAS  Google Scholar 

  13. M. Kumar, P.G. Ganesan et al., Nanotechnology 19, 175606 (2008)

    Article  Google Scholar 

  14. P. Kumar, Semicond. Sci. Technol. 31, 035014 (2016)

    Article  Google Scholar 

  15. M. Kumar, T. Jangid et al., Nanoscale Res. Lett. 11, 1 (2016)

    Article  Google Scholar 

  16. P. Kumar, U.B. Singh et al., Beilstein J. Nanotechnol. 5, 1864 (2014)

    Article  Google Scholar 

  17. I. Sulania, D.C. Agarwal et al., Phys. Chem. Chem. Phys. 18, 20363 (2016)

    Article  CAS  Google Scholar 

  18. P. Kumar, P. Jain, I. Sulania, Surf. Interface Anal. 48, 196 (2016)

    Article  CAS  Google Scholar 

  19. D. Chiappe, A. Toma et al., Small 9, 913 (2013)

    Article  CAS  Google Scholar 

  20. M. Liedke, A. Keller et al., Phys. Rev. B 87, 024424 (2013)

    Article  Google Scholar 

  21. H. Liu, M. Li et al., Adv. Mater. 26, 2718 (2014)

    Article  CAS  Google Scholar 

  22. M.K. Sharma, D.K. Mishra et al., J. Appl. Phys. 110, 063902 (2011)

    Article  Google Scholar 

  23. R. Kumar, V. Kumar, Opt. Mater. 88, 320 (2019)

    Article  CAS  Google Scholar 

  24. R.W. Johnson, A. Hultqvist, S. Bent, Mater. Today 17, 236 (2014)

    Article  CAS  Google Scholar 

  25. S. Mueller, J. Mueller, A. Singh et al., Adv. Func. Mater. 22, 2412 (2012)

    Article  CAS  Google Scholar 

  26. P. Kumar, G. Rodrigues et al., Pramana—J. Phys. 59, 805 (2002)

    Article  CAS  Google Scholar 

  27. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268, 1818 (2010)

    Article  CAS  Google Scholar 

  28. I. Horcas et al., Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  29. P. Rauwel, E. Rauwel et al., J. Appl. Phys. 112, 104107 (2012)

    Article  Google Scholar 

  30. K.M. Law, S. Budhathoki et al., Sci. Rep. 10, 18357 (2020)

    Article  CAS  Google Scholar 

  31. S.K. Singh, V.V. Siva, P. Kumar, Appl. Phys. A 127, 524 (2021)

    Article  CAS  Google Scholar 

  32. R. Kumar, V. Chauhan et al., J. Alloy. Compd. 831, 154698 (2020)

    Article  CAS  Google Scholar 

  33. N. Manikanthababu et al., Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 379, 230–234 (2016)

    Article  CAS  Google Scholar 

  34. T. Tan et al., Chin. Phys. B 25, 117306 (2016)

    Article  Google Scholar 

  35. W. Zhang et al., Nanoscale Res. Lett. (2017). https://doi.org/10.1186/s11671-016-1812-z

    Article  Google Scholar 

  36. M. Liu et al., Surf. Sci. 576, 67 (2005)

    Article  Google Scholar 

  37. C. Morant et al., Surf. Interface Anal. 16, 304 (1990)

    Article  CAS  Google Scholar 

  38. C. Rodenbücher et al., Appl. Phys. Lett. 108, 252903 (2016)

    Article  Google Scholar 

  39. S. Mandal et al., Materials Today: Proceedings 39, 1821 (2021)

  40. C. Hu, K. Xia et al., Energy Environ. Sci. 15, 1406 (2022)

    Article  CAS  Google Scholar 

  41. Y. Bourezig, B. Bouabdallah et al., Int. J. Nanoelectron. Mater. 2, 63 (2009)

    Google Scholar 

  42. A. Vergara, E. Llobet, Front. Neuroeng. 4, 1 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. S. Bhattacharya for helping with the Atomic Layer Deposition (ALD) process for the growth of the films. Authors are indebted to Inter University Accelerator Centre (IUAC), New Delhi, India for providing the ion beam facility. The authors are also grateful to Dr. G. D. Verma, IIT Roorkee for providing the XPS measurements. For the AFM measurements, the authors would like to thank Dr. T. Som of Institiue of Physics (IoP), Bhubaneswar and the Central Research Facility (CRF) of Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar. This work is supported by DST_FIST, New Delhi under grant #SR/FST/ET-1/2021/862.

Funding

DST_FIST, #SR/FST/ET-1/2021/862, Udai Singh.

Author information

Authors and Affiliations

Authors

Contributions

SM: Investigation, Visualization, Formal analysis, Writing—original draft. UPS: Conceptualization, Writing—review & editing, Supervision. PK: Resources, Supervision.

Corresponding author

Correspondence to Sikta Mandal.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Singh, U.P. & Kumar, P. Influence of low energy ion irradiation on oxygen deficient hafnium oxide (HfO2) thin films. J Mater Sci: Mater Electron 34, 1216 (2023). https://doi.org/10.1007/s10854-023-10614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10614-4

Navigation