Skip to main content
Log in

Influence of gadolinium precursor on the enhanced red shift of Gd/SnO2–TiO2 nanoparticles and catalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gd/SnO2–TiO2 nanoparticles were synthesized by using ultrasonic and hydrothermal methods. Effect of concentration of gadolinium (Gd) precursor on particle size and activity of nanoparticles was studied. It was observed that the particle size increases with the increase in concentration of gadolinium precursor. Gd/SnO2–TiO2 nanoparticles were characterized by TEM, SEM, EDX, TGA, FTIR and powder XRD. Band gap calculation was done by using Solid Phase Spectrophotometer to determine the optical properties of nanoparticles. The effect of concentration of Gd on band gap was investigated and red shift was observed for Gd/SnO2–TiO2 from 5.3 to 2.0 eV. Photocatalytic degradation of Methylene Blue was carried out to determine the catalytic properties of Gd/SnO2–TiO2. It was found that Gd/SnO2–TiO2 nanoparticles prepared with 0.004 M concentration of Gd precursor degraded the dye more effectively as compared to the samples prepared with 0.005 and 0.006 M concentrations of Gd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Yu, J. Bai, H. Liang, J. Wang, C. Li, Appl. Surf. Sci. 349, 241–250 (2015)

    Article  Google Scholar 

  2. H. Perveen, M.A. Farrukh, M. Khaleeq-ur-Rahman, B. Munir, M.A. Tahir, Russ. J. Phys. Chem. A 89, 99–107 (2015)

    Article  Google Scholar 

  3. S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Superlattice. Microst. 82, 234–247 (2015)

    Article  Google Scholar 

  4. J.C. Manifacier, M.D. Murcia, J.P. Fillard, E. Vicario, Thin Solid Films 41, 127–144 (1997)

    Article  Google Scholar 

  5. K. Reddy, S. Manorama, A. Redd, Mater. Chem. Phys. 78, 239–245 (2002)

    Article  Google Scholar 

  6. I. Jing, S. Li, L. Xue, H. Fu, Solar Energy Mater. Solar Cell 92, 1030–1036 (2008)

    Article  Google Scholar 

  7. G. Wang, J. Mol. Catal. A Chem. 274, 185–191 (2007)

    Article  Google Scholar 

  8. S. Sahni, B. Reddy, B. Murty, Mater. Sci. Eng. A 452–453, 758–762 (2007)

    Article  Google Scholar 

  9. M. Francisco, V. Mastelaro, Chem. Mater. 14(6), 2514–2518 (2002)

    Article  Google Scholar 

  10. A. Welte, C. Waldauf, P. Wellmann, Thin Solid Films 516, 7256–7259 (2008)

    Article  Google Scholar 

  11. S. Yuan, Q. Sheng, J. Zhang, F. Chen, M. Anpo, Q. Zhang, Micropor. Mesopor. Mat. 79, 93–99 (2005)

    Article  Google Scholar 

  12. A. Beltra, J. Andres, J.R. Sambrano, E. Longo, J. Phys. Chem. A 112, 8943–8952 (2008)

    Article  Google Scholar 

  13. F. Labat, P. Baranek, C. Adamo, J. Chem. Theory Comput. 4, 341–352 (2008)

    Article  Google Scholar 

  14. K. Rekha, M. Nirmala, G. Manjula, Anukaliani, J. Phys. Condens. Matter 405(15), 3180–3185 (2010)

    Google Scholar 

  15. K. Ellmer, R. Cebulla, R. Wendt, Thin Solid Films 317, 413–416 (1994)

    Article  Google Scholar 

  16. H. Ennen, Appl. Phys. Lett. 43, 943 (1983)

    Article  Google Scholar 

  17. C. Wen, H. Deng, J. Tian, J. Zhang, T. Nonferr, Metals Soc. 16, 728–731 (2006)

    Google Scholar 

  18. Y. Feng, Y. Cui, B. Logan, Z. Liu, Chemosphere 70, 1629–1636 (2008)

    Article  Google Scholar 

  19. S. Sivasankaran, S. Sankaranarayanan, S. Ramakrishnan, Mater. Sci. Forum 754, 89–97 (2013)

    Article  Google Scholar 

  20. M. Ashokkumar, F. Grieser, Chem. Eng. Rev. 15, 41–83 (1999)

    Article  Google Scholar 

  21. L.A.P. Maqueda, F. Franco, M.A. Aviles, J. Poyato, J.L.P. Rodriguez, Clays. Clay. Mine. 51, 701–708 (2003)

    Article  Google Scholar 

  22. M.B. Malekshahi, A.K. Nemati, L. Fatholahi, Z.B. Malekshahi, JNS 3, 1–9 (2013)

    Article  Google Scholar 

  23. L.L. Schramm, E.N. Stasiuk, D.G. Marangoni, Annu. R. Prog. Chem. 99, 3–48 (2003)

    Article  Google Scholar 

  24. A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Superlattice. Microstruct. 67, 118–126 (2013)

    Article  Google Scholar 

  25. A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, J. Nanomater. 2014, 367529 (2014)

    Google Scholar 

  26. S. Mattson, A. Pugh, J. Soil Sci. 38, 229 (1934)

    Google Scholar 

  27. M.A. Farrukh, B.T. Heng, R. Adnan, Turk. J. Chem. 34, 537–550 (2010)

    Google Scholar 

  28. A.A. Belheker, S.V. Awate, R. Anand, Control Catal. Commun. 3, 453–458 (2002)

    Article  Google Scholar 

  29. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, N.K. Allam, Superlattice Microst. 76, 339–348 (2014)

    Article  Google Scholar 

  30. M.A. Farrukh, P. Tan, R. Adnan, Turk. J. Chem. 36, 303–314 (2012)

    Google Scholar 

  31. B. Grzmil, M. Rabe, B. Kic, K. Lubkowski, Ind. Eng. Chem. Res. 4, 46 (2007)

    Google Scholar 

  32. G. Magesh, G. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Ind. J. Chem. 48, 480–488 (2009)

    Google Scholar 

  33. Q. Xiao, Z. Si, Z. Yu, G. Qui, Mater. Sci. Eng. B 137, 189–194 (2007)

    Article  Google Scholar 

  34. I. Muneer, M.A. Farrukh, S. Javaid, M. Shahid, M. Khaleeq-ur-Rahman, Superlattice Microst. 77, 256–266 (2015)

    Article  Google Scholar 

  35. G. Mi, C. Yu, L. Xiao, Chem. Res 27(3), 350–353 (2011)

    Google Scholar 

  36. K.C. Song, Y. Kang, Mater. Lett. 42, 283–289 (2000)

    Article  Google Scholar 

  37. A. Imtiaz, M. A. Farrukh, M. Khaleeq-Ur-Rahman, R. Adnan, Sci. World J. 2013, 641420 (2013)

    Article  Google Scholar 

  38. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, N.K. Allam, J. Electroanal. Chem. 735, 129–135 (2014)

    Article  Google Scholar 

  39. N.K. Sahoo, S. Thakar, M. Senthikumar, D. Bhattacharyya, N.C. Das, Thin Solid Films 440, 155–168 (2005)

    Article  Google Scholar 

  40. M.A. Farrukh, C.-K. Thong, R. Adnan, M.A. Kamarulzaman, Russ. J. Phys. Chem. A 86, 2041–2048 (2012)

    Article  Google Scholar 

  41. H. Yazid, R. Adnan, M.A. Farrukh, S.A. Hamid, J. Chin. Chem. Soc. 58, 593–601 (2011)

    Article  Google Scholar 

  42. B. Huang, C. Zhao, M. Zhang, Z. Zhang, E. Xie, J. Zhou, W. Han, Appl. Surf. Sci. 349, 615–621 (2015)

    Article  Google Scholar 

  43. W. Dong, F. Pan, L. Xu, M. Zheng, C.H. Sow, K. Wu, G.Q. Xu, W. Chen, Appl. Surf. Sci. 349, 279–286 (2015)

    Article  Google Scholar 

  44. N.S. Arul, D. Mangalaraj, T.W. Kim, Appl. Surf. Sci. 349, 459–464 (2015)

    Article  Google Scholar 

  45. R. Adnan, N.A. Razana, I.A. Rehman, M.A. Farrukh, J. Chin. Chem. Soc. 57, 222–229 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Word Academy of Sciences (TWAS) through Research Grant 11-028 RG/MSN/AS_C and Higher Education Commission (HEC) Pakistan under Grant Number 20-2660/NRPU/R&D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrukh, M.A., Shahid, M., Muneer, I. et al. Influence of gadolinium precursor on the enhanced red shift of Gd/SnO2–TiO2 nanoparticles and catalytic activity. J Mater Sci: Mater Electron 27, 2994–3002 (2016). https://doi.org/10.1007/s10854-015-4121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4121-x

Keywords

Navigation