Skip to main content
Log in

Reliability and failure mechanism of copper pillar joints under current stressing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electromigration (EM) lifetime of copper pillars were investigated by orthogonal tests. According to the Black’s mean-time-to-failure equation, the activation energy and exponent of current density were calculated to be 0.88 eV and 1.64, respectively. The microstructure evolution of the joints under current stressing was observed. It was found that the Sn solder was usually depleted before the joint failed, which means the joint was only composed of Cu6Sn5 and Cu3Sn phases as a Cu/Cu3Sn/Cu6Sn5/Cu3Sn/Cu structure after a period of EM test. Three failure modes were observed: failure along the Cu/Cu3Sn interface at the cathode side, failure along the Cu/Cu3Sn interface at the anode side and brittle fracture through the IMCs. The percentages of these three failure modes are 55, 24 and 21 %, respectively. The formation of Kirkendall voids was suggested to be the key factor for the EM failure of the Cu pillar joints. Before the Sn solder was depleted, voids were mainly formed at the Cu6Sn5/Sn interface at the cathode, which is dominated by the Cu flux induced by current; while after the Sn solder was depleted, voids formation is dominated by the chemical diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.-J. Kim, G.-T. Lim, J. Kim, K. Lee, Y.-B. Park, H.-Y. Lee, Y.-C. Joo, Met. Mater. Int. 15(5), 815 (2009)

    Article  Google Scholar 

  2. G.-T. Lim, B.-J. Kim, K. Lee, J. Kim, Y.-C. Joo, Y.-B. Park, J. Electron. Mater. 38(11), 2228 (2009)

    Article  Google Scholar 

  3. S. Aksöz, Y. Ocak, K. Keşlioğlu, N. Maraşlı, Met. Mater. Int. 16(3), 507 (2010)

    Article  Google Scholar 

  4. Y.R. Yoo, Y.S. Kim, Met. Mater. Int. 16(5), 739 (2010)

    Article  Google Scholar 

  5. M.L. Huang, F. Zhang, F. Yang, N. Zhao, J. Mater. Sci. Mater. Electron. 26(4), 2278 (2015)

    Article  Google Scholar 

  6. X.M. Li, F.L. Sun, Y. Liu, H. Zhang, T. Xin, J. Mater. Sci. Mater. Electron. 25(9), 3742 (2014)

    Article  Google Scholar 

  7. Y.M. Kim, K.M. Harr, Y.H. Kim, Electron. Mater. Lett. 6(4), 151 (2010)

    Article  Google Scholar 

  8. J.W. Nah, K.W. Paik, J.O. Suh, K.N. Tu, J. Appl. Phys. 94(12), 7560 (2003)

    Article  Google Scholar 

  9. W.J. Choi, E.C.C. Yeh, K.N. Tu, J. Appl. Phys. 94(9), 5665 (2003)

    Article  Google Scholar 

  10. Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, Acta Mater. 53(7), 2029 (2005)

    Article  Google Scholar 

  11. T.L. Shao, Y.H. Chen, S.H. Chiu, C. Chen, J. Appl. Phys. 96(8), 4518 (2004)

    Article  Google Scholar 

  12. D. Kim, J.H. Chang, J. Park, J.J. Pak, J. Mater. Sci. Mater. Electron. 22(7), 703 (2011)

    Article  Google Scholar 

  13. J.W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, C.T. Chong, V. Kripesh, B.R. Su, C. Chen, in 56th Electronic Components and Technology Conference (2006), p. 657

  14. J.-W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, V.S. Rao, V. Kripesh, F. Hua, J. Appl. Phys. 100(12), 123513 (2006)

    Article  Google Scholar 

  15. Y.C. Liang, W.A. Tsao, C. Chen, D.-J. Yao, A.T. Huang, Y.-S. Lai, J. Appl. Phys. 111(4), 043705 (2012)

    Article  Google Scholar 

  16. Y. Orii, K. Toriyama, S. Kohara, H. Noma, K. Okamoto, K. Uenishi, in 2nd Ieee Cpmt Symposium (2012)

  17. Y.-S. Lai, Y.-T. Chiu, J. Chen, J. Electron. Mater. 37(10), 1624 (2008)

    Article  Google Scholar 

  18. T. Laurila, J. Karppinen, J. Li, V. Vuorinen, M. Paulasto-Krockel, J. Mater. Sci. Mater. Electron. 24(2), 644 (2013)

    Article  Google Scholar 

  19. L. Xu, J.-K. Han, J.J. Liang, K.N. Tu, Y.-S. Lai, Appl. Phys. Lett. 92(26), 262104 (2008)

    Article  Google Scholar 

  20. A.L.X. Jiang, L.C. Ming, J.C.Y. Gao, T.K. Hwee, in 7th International Conference on Electronics Packaging Technology (2006), p. 11

  21. P. Chen, X.C. Zhao, Y. Wang, Y. Liu, H. Li, Y. Gu, J. Mater. Sci. Mater. Electron. 26(3), 1940 (2015)

    Article  Google Scholar 

  22. B.-J. Kim, G.-T. Lim, J. Kim, K. Lee, Y.-B. Park, H.-Y. Lee, Y.-C. Joo, J. Electron. Mater. 39(10), 2281 (2010)

    Article  Google Scholar 

  23. M.-H. Jeong, G.-T. Lim, B.-J. Kim, K.-W. Lee, J.-D. Kim, Y.-C. Joo, Y.-B. Park, J. Electron. Mater. 39(11), 2368 (2010)

    Article  Google Scholar 

  24. R. An, Y.H. Tian, R. Zhang, C.Q. Wang, J. Mater. Sci. Mater. Electron. 26(5), 2674 (2015)

    Article  Google Scholar 

  25. M.-H. Jeong, J.-W. Kim, B.-H. Kwak, Y.-B. Park, Microelectron. Eng. 89, 50 (2012)

    Article  Google Scholar 

  26. J.R. Black, Ieee 57(9), 1587 (1969)

    Article  Google Scholar 

  27. C. Chen, H.M. Tong, K.N. Tu, Annu. Rev. Mater. Res. 40(1), 531 (2010)

    Article  Google Scholar 

  28. O. Minho, G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, Microelectron. Eng. 120, 133 (2014)

    Article  Google Scholar 

  29. A.R. Grone, J. Phys. Chem. Solids 20(1–2), 88 (1961)

    Article  Google Scholar 

  30. G.A. Sullivan, J. Phys. Chem. Solids 28(2), 347 (1967)

    Article  Google Scholar 

  31. M.Y. Hsieh, H.B. Huntington, J. Phys. Chem. Solids 39(8), 867 (1978)

    Article  Google Scholar 

  32. B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, M. Ding, J. Im, P.S. Ho, J. Appl. Phys. 100(8), 084909 (2006)

    Article  Google Scholar 

  33. B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, J. Im, P.S. Ho, Acta Mater. 55(8), 2805 (2007)

    Article  Google Scholar 

  34. Y. Jung, J. Yu, J. Appl. Phys. (2014). doi:10.1063/1.4867115

    Google Scholar 

  35. P.S. Ho, T. Kwok, Rep. Prog. Phys. 52(3), 301 (1989)

    Article  Google Scholar 

  36. H. Gan, K.N. Tu, J. Appl. Phys. (2005). doi:10.1063/1.1861151

    Google Scholar 

  37. H.C. Yu, S.H. Liu, C. Chen, J. Appl. Phys. (2005). doi:10.1063/1.1954871

    Google Scholar 

  38. M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, Appl. Phys. Lett. (2009). doi:10.1063/1.3067863

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China, Grant Nos. 51171191 and 51101161, the National Basic Research Program of China, Grant No. 2010CB631006, the Major National Science and Technology Program of China, Grant No. 2011ZX02602, National Key Scientific Instrument and Equipment Development Projects of China, Grant No. 2013YQ120355, and Natural Science Foundation of Liaoning Province, Grant No. 2013020015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Dong Guo or Jian Ku Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HC., Guo, JD., Chen, JQ. et al. Reliability and failure mechanism of copper pillar joints under current stressing. J Mater Sci: Mater Electron 26, 7690–7697 (2015). https://doi.org/10.1007/s10854-015-3410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3410-8

Keywords

Navigation