Skip to main content
Log in

Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Cu pillar is a thick underbump metallurgy (UBM) structure developed to alleviate current crowding in a flip-chip solder joint under operating conditions. We present in this work an examination of the electromigration reliability and morphologies of Cu pillar flip-chip solder joints formed by joining Ti/Cu/Ni UBM with largely elongated ∼62 μm Cu onto Cu substrate pad metallization using the Sn-3Ag-0.5Cu solder alloy. Three test conditions that controlled average current densities in solder joints and ambient temperatures were considered: 10 kA/cm2 at 150°C, 10 kA/cm2 at 160°C, and 15 kA/cm2 at 125°C. Electromigration reliability of this particular solder joint turns out to be greatly enhanced compared to a conventional solder joint with a thin-film-stack UBM. Cross-sectional examinations of solder joints upon failure indicate that cracks formed in (Cu,Ni)6Sn5 or Cu6Sn5 intermetallic compounds (IMCs) near the cathode side of the solder joint. Moreover, the ~52-μm-thick Sn-Ag-Cu solder after long-term current stressing has turned into a combination of ~80% Cu-Ni-Sn IMC and ~20% Sn-rich phases, which appeared in the form of large aggregates that in general were distributed on the cathode side of the solder joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu, J. Appl. Phys. 94, 5451 (2003) doi:10.1063/1.1611263

    Article  CAS  Google Scholar 

  2. T.Y. Lee, K.N. Tu, D.R. Frear, J. Appl. Phys. 90, 4502 (2001) doi:10.1063/1.1400096

    Article  CAS  Google Scholar 

  3. L. Zhang, S. Ou, J. Huang, K.N. Tu, S. Gee, L. Nguyen, Appl. Phys. Lett. 89, 012106 (2006) doi:10.1063/1.2158702

    Article  Google Scholar 

  4. L. Xu, J.H.L. Pang, K.N. Tu, Appl. Phys. Lett. 89, 221909 (2006), doi:10.1063/1.2397549

    Article  Google Scholar 

  5. Y.-S. Lai, C.-W. Lee, C.-L. Kao, J. Electron Packag. 129, 56 (2007) doi:10.1115/1.2429710

    Article  CAS  Google Scholar 

  6. Y.-S. Lai, K.-M. Chen, C.-L. Kao, C.-W. Lee, Y.-T. Chiu, Microelectron. Reliab. 47, 1273 (2007) doi:10.1016/j.microrel.2006.09.023

    Article  CAS  Google Scholar 

  7. Y.-S. Lai and Y.-T. Chiu, J. Electron Packag. (in press)

  8. K.N. Tu, C.C. Yeh, C.Y. Liu, C. Chen. Appl. Phys. Lett. 76, 988 (2000) doi:10.1063/1.125915

    Article  CAS  Google Scholar 

  9. W.J. Choi, E.C.C. Yeh, K.N. Tu, J. Appl. Phys. 94, 5665 (2003) doi:10.1063/1.1616993

    Article  CAS  Google Scholar 

  10. S.W. Liang, T.L. Shao, C. Chen, E.C.C. Yeh, K.N. Tu, J. Mater. Res. 21, 137 (2006) doi:10.1557/jmr.2006.0004

    Article  CAS  Google Scholar 

  11. Y.-S. Lai, C.-L. Kao, Microelectron. Reliab. 46, 915 (2006) doi:10.1016/j.microrel.2005.02.007

    Article  CAS  Google Scholar 

  12. Y.-S. Lai, C.-L. Kao, Microelectron. Reliab. 46, 1357 (2006) doi:10.1016/j.microrel.2005.08.009

    Article  Google Scholar 

  13. J.-W. Nah, J.O. Suh, K.N. Tu, S.W. Yoon, V.S. Rao, V. Kripesh, et al., J. Appl. Phys. 100, 123513 (2006) doi:10.1063/1.2402475

    Article  Google Scholar 

  14. S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, et al., JOM 55, 61 (2003) doi:10.1007/s11837-003-0143-6

    Article  CAS  Google Scholar 

  15. J.D. Wu, P.J. Zheng, C.W. Lee, S.C. Hung, J.J. Lee, Microelectron. Reliab. 46, 41 (2006) doi:10.1016/j.microrel.2005.01.012

    Article  Google Scholar 

  16. Y.-S. Lai, C.-W. Lee, IEEE Trans. Compon. Packag. Tech. 30, 526 (2007) doi:10.1109/TCAPT.2007.898681

    Article  CAS  Google Scholar 

  17. Y.-S. Lai, C.-L. Kao, J. Electron. Mater. 35, 972 (2006) doi:10.1007/BF02692556

    Article  CAS  Google Scholar 

  18. C. Yu, J. Liu, H. Lu, P. Li, J. Chen, Intermetallics 15, 1471 (2007) doi:10.1016/j.intermet.2007.05.005

    Article  CAS  Google Scholar 

  19. J. Chen, Y.-S. Lai, C.-Y. Ren, D.-J. Huang, Appl. Phys. Lett. 92, 081901 (2008) doi:10.1063/1.2884685

    Article  Google Scholar 

  20. H. Sato, R.S. Toth, Phys. Rev. 124, 1833 (1961) doi:10.1103/PhysRev.124.1833

    Article  CAS  Google Scholar 

  21. H. Sato, R.S. Toth, Phys. Rev. 127, 469 (1962) doi:10.1103/PhysRev.127.469

    Article  CAS  Google Scholar 

  22. C.Y. Liu, J.T. Chen, Y.C. Chuang, L. Ke, S.J. Wang, Appl. Phys. Lett. 90, 112114 (2007) doi:10.1063/1.2714100

    Article  Google Scholar 

  23. A.T. Huang, K.N. Tu, Y.-S. Lai, J. Appl. Phys. 100, 033512 (2006) doi:10.1063/1.2227621

    Article  Google Scholar 

  24. C.M. Tsai, Y.L. Lin, J.Y. Tsai, Y.-S. Lai, C.R. Kao, J. Electron. Mater. 35, 1005 (2006) doi:10.1007/BF02692560

    Article  CAS  Google Scholar 

  25. F.-Y. Ouyang, K.N. Tu, C.-L. Kao, Y.-S. Lai, Appl. Phys. Lett. 90, 211914 (2007) doi:10.1063/1.2743395

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to their colleagues, Yu-Hsiu Shao and Chiu-Wen Lee, for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Shao Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, YS., Chiu, YT. & Chen, J. Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization. J. Electron. Mater. 37, 1624–1630 (2008). https://doi.org/10.1007/s11664-008-0515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-008-0515-3

Keywords

Navigation