Skip to main content
Log in

Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Trivalent neodymium doped ZnO (Zn1−xNdxO, x = 0.0, 0.03, 0.06 and 0.09) nanoparticles (NPs) synthesized by co-precipitation method with improved optical and antibacterial performance is reported. X-ray diffraction pattern indicates most of Nd3+ ions are incorporated in Zn2+ ions of ZnO lattice and hence there is no secondary peak of NdO3 in synthesized ZnO NPs. Fourier transform infrared spectroscopy analysis of synthesized NPs exhibits similar patterns in Zn/Nd–O bands observed at 480 cm−1. High resolution scanning electron microscopy images revealed the formation of spindle like morphology and the incorporation of Nd ions is confirmed by energy dispersive spectra analysis. UV–visible absorption spectra of pure and Nd doped ZnO NPs showed the variation of the band gap in the range of 3.06–2.65 eV. Raman analysis confirmed the formation of wurtzite structure of NPs was distorted due to Nd substitution in ZnO matrix. X-ray photoelectron spectroscopy confirmed the Nd incorporation in the ZnO lattice as Nd3+. The prepared Nd doped ZnO NPs showed potential application in antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Chen, J. Wang, Phys. Chem. Chem. Phys. 5, 17793–17797 (2013)

    Article  Google Scholar 

  2. S.Z. Wu, H.L. Yang, X.G. Xu, J. Miao, Y. Jiang, J. Phys: Conf. Ser. 263, 012022 (2011)

    Google Scholar 

  3. S. Huang, Q. Xiao, H. Zhou, D. Wang, W. Jiang, J. Alloys Compd. 486, L24–L26 (2009)

    Article  Google Scholar 

  4. W. An, X. Wu, X.C. Zeng, J. Phys. Chem. C 112, 5747–5755 (2008)

    Article  Google Scholar 

  5. S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 94, 037205 (2005)

    Article  Google Scholar 

  6. D.A. Reddy, A. Divya, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Phys. B 406, 1944–1949 (2011)

    Article  Google Scholar 

  7. D. Wang, Q. Chen, G. Xing, J. Yi, S. Rahman Bakaul, J. Ding, J. Wang, T. Wu, Nano Lett. 12, 3994–4000 (2012)

    Article  Google Scholar 

  8. F. Xian, X. Li, Opt. Laser Technol. 45, 508–512 (2013)

    Article  Google Scholar 

  9. S. Kumar, P.D. Sahare, J. Rare Earths 30, 761–768 (2012)

    Article  Google Scholar 

  10. L.C. Chao, J.W. Huang, C.W. Chang, Phys. B: Condens. Matter 404, 1301–1304 (2009)

    Article  Google Scholar 

  11. B. Basavalingu, M.S.V. Kumar, H.N. Girish, S. Yoda, J. Alloys Compd. 552, 382–386 (2013)

    Article  Google Scholar 

  12. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, V.P.S. Awana, J. Mater. Sci.: Mater. Electron. 24, 5102–5110 (2013)

    Google Scholar 

  13. J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Cryst. Res. Technol. 47, 713–718 (2012)

    Article  Google Scholar 

  14. B. Shahmoradi, K. Soga, S. Ananda, R. Somashekar, K. Byrappa, Nanoscale 2, 1160–1164 (2010)

    Article  Google Scholar 

  15. S.P. Prakoso, R. Saleh, Mater. Sci. Appl. 3, 530–537 (2012)

    Google Scholar 

  16. Y. Cao, W. Pan, Y. Zong, D. Jia, Sens. Actuators, B 138, 480–484 (2009)

    Article  Google Scholar 

  17. B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Mater. Charact. 70, 1–7 (2012)

    Article  Google Scholar 

  18. M. Chandrasekar, H. Nagabhushana, S.C. Sharma, K.H. Sudheer Kumar, N. Dhananjaya, D.V. Sunitha, C. Shivakumara, B.M. Nagabhushana, J. Alloys Compd. 584, 417–424 (2014)

    Article  Google Scholar 

  19. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954)

    Google Scholar 

  20. L. Vegard, Die Konstitution der Mischkristalle und die Raumfullung der Atome. Z. Phys. 5, 17–26 (1921)

    Article  Google Scholar 

  21. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161–3164 (1991)

    Article  Google Scholar 

  22. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 2nd edn. (Prentice Hall, Upper Saddle River, NJ, 2001)

    Google Scholar 

  23. A.J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar, Spectrochim. Acta A 81, 53–58 (2011)

    Article  Google Scholar 

  24. G. Vijayaprasath, G. Ravi, A.S. Haja Hameed, T. Mahalingam, J. Phys. Chem. C 118, 9715–9725 (2014)

    Article  Google Scholar 

  25. Y. Wang, X. Liao, Z. Huang, G. Yin, J. Gu, Y. Yao, Colloids Surf. A 372, 165–171 (2010)

    Article  Google Scholar 

  26. W.M. Hlaing Oo, M.D. Mc Cluskey, A.D. Lalonde, M.G. Norton, Appl. Phys. Lett. 86, 73111 (2005)

    Article  Google Scholar 

  27. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Mater. Lett. 90, 83–86 (2013)

    Article  Google Scholar 

  28. M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, J. Appl. Phys. 106, 84306 (2009)

    Article  Google Scholar 

  29. V. Kumar, S. Som, V. Kumar, O.M. Ntwaeaborwa, E. Coetsee, H.C. Swart, Chem. Eng. J. 255, 541–552 (2014)

    Article  Google Scholar 

  30. M. Bouloudenine, N. Viart, S. Colis, J. Kortus, A. Dinia, Appl. Phys. Lett. 87, 052501–052503 (2005)

    Article  Google Scholar 

  31. P. Koidl, Phys. Rev. B 15, 2493–2499 (1977)

    Article  Google Scholar 

  32. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  33. L. Chun-Ming, F. Li-Mei, Z. Xiao-Tao, Z. Wei-Lei, Chin. Phys. 16, 95–99 (2007)

    Article  Google Scholar 

  34. R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta A 79, 1605–1612 (2011)

    Article  Google Scholar 

  35. G.H. Mhlongo, O.M. Ntwaeaborwa, H.C. Swart, R.E. Kroon, P. Solarz, W. Ryba-Romanowski, K.T. Hillie, J. Phys. Chem. C 115, 17625–17632 (2011)

    Article  Google Scholar 

  36. H.M. Xiong, D.G. Shchukin, H. Mohwald, Y. Xu, Y.Y. Xia, Angew. Chem. Int. Ed. Engl. 48, 2727–2731 (2009)

    Article  Google Scholar 

  37. M. Caglara, F. Yakuphanoglu, Appl. Surf. Sci. 258, 3039–3044 (2012)

    Article  Google Scholar 

  38. A. Singhal, J. Alloys Compd. 515, 12–15 (2012)

    Article  Google Scholar 

  39. M. Subramanian, P. Thakur, S. Gautam, K.H. Chae, M. Tanemura, T. Hihara, S. Vijayalakshmi, T. Soga, S.S. Kim, K. Asokan, R. Jayavel, J. Phys. D Appl. Phys. 42, 105410 (2009)

    Article  Google Scholar 

  40. R.H. Shin, J.H. Lee, G. Kim, W. Jo, D.H. Kim, H.J. Lee, J. Kang, Jpn. J. Appl. Phys. 49, 091501 (2010)

    Article  Google Scholar 

  41. J. Zhang, S.J. Deng, S.Y. Liu, J.M. Chen, B.Q. Han, Y. Wang, Y.D. Wang, Mater. Technol. 29, 262–268 (2014)

    Article  Google Scholar 

  42. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)

    Article  Google Scholar 

  43. B.J. Coppa, R.F. Davis, R.J. Nemanich, Appl. Phys. Lett. 82, 400–402 (2003)

    Article  Google Scholar 

  44. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 8124–8125 (2004)

    Article  Google Scholar 

  45. S. Kumar, P.D. Sahare, Mater. Res. Bull. 51, 217–223 (2014)

    Article  Google Scholar 

  46. M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, T. Srećković, J. Raman Spectrosc. 41, 914–921 (2010)

    Article  Google Scholar 

  47. N. Padmavathy, R. Vijayaraghavan, Sci. Technol. Adv. Mater. 9, 432–438 (2008)

    Article  Google Scholar 

  48. K.H. Tam, A.B. Djurisic, C.M.N. Chan, Y.Y. Xi, C.W. Tse, Y.H. Leung, W.K. Chan, F.C.C. Leung, D.W.T. Au, Thin Solid Films 516, 6167–6174 (2008)

    Article  Google Scholar 

  49. C. Karunakaran, V. Rajeshwari, P. Gomathisankar, J. Alloys Compd. 508, 587–591 (2010)

    Article  Google Scholar 

  50. L. Zung, L. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O’Neill, D.W. York, J. Nanopart. Res. 12, 1625–1636 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors G. Ravi and G. Vijayaprasath gratefully acknowledge the UGC, New Delhi, India [Ref. No. F. 41-933/2012 (SR)] towards the financial support to carry out this work. The authors express their sincere thanks to Department of Industrial Chemistry, Alagappa University for extending HRSEM (Funded by DST-PURSE) facility. The work was carried out as the cooperative research projects of the Research Institute of Electronics, Shizuoka University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaprasath, G., Murugan, R., Palanisamy, S. et al. Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles. J Mater Sci: Mater Electron 26, 7564–7576 (2015). https://doi.org/10.1007/s10854-015-3393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3393-5

Keywords

Navigation