Skip to main content
Log in

The Modification of Structural, Optical and Antibacterial Activity Properties of Rare Earth Gadolinium-Doped ZnO Nanoparticles Prepared by Co-Precipitation Method

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Gd doped ZnO nanoparticles with differing dopant concentration are synthesized by co-precipitation method and analysed for their structural, morphological and optical properties. XRD profiles confirmed that the synthesized material is nano-crystalline ZnO with well-crystalline and hexagonal wurtzite structure. FESEM images delineated hexagonal formed in ZnO nanoparticles. The assimilation band gap observed 463 cm−1 is credited to the ZnO extending vibrations and EDX affirms the synthesis of undoped and Gd doped ZnO nanoparticles. Optical properties of the nanoparticles were examined by photoluminescence study and it uncovered band edge emission for all synthesized materials with additional emissions in visible region because of the presence of opening and interstitial deformities. The antibacterial effectiveness of Gd doped ZnO nanoparticles were investigated against a Gram positive and Gram negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Klingshirn, ZnO: material, physics and applications. Chem. Phys. Chem. 8, 782–803 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. N.R. Panda, D. Sahu, S. Mohanty, B.S. Acharya, Growth morphology and optical properties of ZnO nanostructures on different substrates. J. Nanosci. Nanotechnol. 13(1), 427–433 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. N.R. Panda, B.S. Acharya, P. Nayak, Sonochemical synthesis of nitrogen doped ZnOnanorods: effect of anions on growth and optical properties. J. Mater. Sci.: Mater. Electron. 24(10), 4043–4049 (2013)

    CAS  Google Scholar 

  4. Y. Sivalingam, E. Martinelli, A. Catini, G. Magna, G. Pomarico, F. Basoli, R. Paolesse, C.D. Natale, Gas-sensitive photoconductivity of porphyrin-functionalized ZnO nanorods. J. Phys. Chem. C 116(16), 9151–9157 (2012)

    Article  CAS  Google Scholar 

  5. A.B. Djurisic et al., Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)

    Article  CAS  Google Scholar 

  6. L.S. Mende, J.L.M. Driscoll, ZnO–nanostructures, defects and devices. Mater. Today 10, 40–48 (2007)

    Article  Google Scholar 

  7. N.R. Panda, B.S. Acharya, Impurity induced crystallinity and optical emissions in ZnO nanorod arrays. Mater. Res. Express 2, 015011 (2014)

    Article  CAS  Google Scholar 

  8. P.P. Murmu, R.J. Mendelsberg, J. Kennedy, D.A. Carder, B.J. Ruck, A. Markwitz, R.J. Reeves, P. Malar, T. Osipowicz, Structural and photoluminescence properties of Gd implanted ZnO single crystals. J. Appl. Phys. 110, 033534 (2011)

    Article  CAS  Google Scholar 

  9. X. Maa, Z. Wang, The optical properties of rare earth Gd doped ZnO nanocrystals. Mater. Sci. Semicond. Process. 15, 227–231 (2012)

    Article  CAS  Google Scholar 

  10. N. Aggarwal, K. Kaur, A. Vasishth, N.K. Verma, Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 13006–13011 (2016)

    CAS  Google Scholar 

  11. X.Y. Yi, C.Y. Ma, F. Yuan, N. Wang, F.W. Qin, B.C. Hu, Q.Y. Zhang, Structural, morphological, photoluminescence and photocatalytic properties of Gd-doped ZnO films. Thin Solid Films 636, 339–345 (2017)

    Article  CAS  Google Scholar 

  12. A. Sharma, S. Dhar, B.P. Singh, T. Kundu, M. Spasova, M. Farle, Influence of Tb doping on the luminescence characteristics of ZnO nanoparticles. J. Nanopart. Res. 14, 676 (2012)

    Article  CAS  Google Scholar 

  13. P. Pandey, M.R. Parra, R. Kurchania, F.Z. Haque, Synthesis and optical properties of pure and Eu+ 3 ion doped ZnO nanoparticles prepared via Sol-Gel method, in Physics of semiconductor devices, environmental science and engineering, ed. by V. Jain, A. Verma (Springer, Cham, 2013)

    Google Scholar 

  14. S. Dharaa, A.K. Raychaudhuri, Enhancement in red emission at room temperature from europium doped ZnO nanowires by 1, 10 phenanthroline-europium interface induced resonant excitations. AIP Adv. 7, 025306 (2017)

    Article  CAS  Google Scholar 

  15. L.C. Chao, P.C. Chiang, S.H. Yang, J.W. Huang, C.C. Liau, J.S. Chen, C.Y. Su, Zinc oxide nanodonut prepared by vapor-phase transport process. Appl. Phys. Lett. 88, 251111 (2006)

    Article  CAS  Google Scholar 

  16. J.A. Mares, M. Nikl, K. Nitsch, N. Solovieva, A. Krasnikov, S. Zazubovich, A role of Gd3+ in scintillating processes in Tb-doped Na–Gd phosphate glasses. J. Lumin. 94–95 321–324 (2001)

    Article  Google Scholar 

  17. Y. Liu, K. Ai, Q. Yuan, L. Lu, Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging. Biomaterials 32(4), 1185–1192 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. P. Kaur, S. Kumar, C.L. Chen, Y.-Y. Hsu, T.-S. Chan, C.-L. Dong, C. Srivastava, A. Singh, S.M. Rao, Investigations on structural, magnetic and electronic structure of Gd doped ZnO nanostructures synthesized using sol–gel technique. Appl. Phys. A 122, 161 (2016)

    Article  CAS  Google Scholar 

  19. L. Liu, P.Y. Yu, Z. Ma, S.S. Mao, Ferromagnetism in GaN:Gd: a density functional theory study. Phys. Rev. Lett. 100, 127203 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. G. Vijayaprasath, R. Murugan, Y. Hayakawa, G. Ravi, Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J. Lumin. 178, 375–383 (2016)

    Article  CAS  Google Scholar 

  21. K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mcklich, J. Fassbender, T. Herrmannsdörfer, T. Bianchi, Ferromagnetic Gd-implanted ZnO single crystals. J. Appl. Phys. 99, 063906 (2006)

    Article  CAS  Google Scholar 

  22. M. Ungureanu, H. Schmidt, Q. Xu, H. Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd). Superlattices Microstruct. 42, 231–235 (2007)

    Article  CAS  Google Scholar 

  23. I.S. Roqan, S. Venkatesh, Z. Zhang, S. Hussain, I. Bantounas, J.B. Franklin, T.H. Flemban, B. Zou, J.-S. Lee, U. Schwingenschlog, P.K. Petrov, M.P. Ryan, N.M. Alford, Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes. J. Appl. Phys. 117, 073904 (2015)

    Article  CAS  Google Scholar 

  24. D. Mithal, T. Kundu, Effect of Gd3+ doping on structural and optical properties of ZnO,Nanocrystals. Solid State Sci. 68, 47–54 (2017)

    Article  CAS  Google Scholar 

  25. G.K. Reddy, A.J. Reddy, R.H. Krishna, B.M. Nagabhushana, G.R. Gopal, Luminescence and spectroscopic investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 5, 350–356 (2017)

    Article  Google Scholar 

  26. S. Rani, B. Lal, S. Saxena, S. Shukla, Photoluminescence properties of Gd:ZnO nano phosphor. J. Sol-Gel. Sci. Technol. 81, 586–592 (2017)

    Article  CAS  Google Scholar 

  27. D. Shikha et al., Structural and optical properties of ZnO thin films deposited by sol–gel method: effect of stabilizer concentration. J. Mater. Sci.: Mater. Electron. 26(7), 4902–4907 (2015)

    CAS  Google Scholar 

  28. T. Thangeeswari, M. Priya, J. Velmurugan, Enhancement in the optical and magnetic properties of ZnO: Co implanted by Gd3+ nanoparticles. J. Mater. Sci.: Mater. Electron. 26(4), 2436–2444 (2015)

    CAS  Google Scholar 

  29. S. Kumar, P.D. Sahare, Gd3+ Incorporated ZnO nanoparticles: a versatile material. Mater. Res. Bull. 51, 217–223 (2014)

    Article  CAS  Google Scholar 

  30. K. Ravichandran, K. Karthika, B. Sakthivel, N. Jabena Begum, S. Snega, K. Swaminathan, V. Senthamilselvi, Inducing superparamagnetic behavior and enhancing antibacterial efficiency of ZnO nanopowders through Mn + F doping. J. Magn. Magn. Mater. 358–359, 52 (2014)

    Google Scholar 

  31. Y.J. Xing, Z.H. Xi, Z.Q. Xue et al., Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Appl. Phys. Lett. 83, 1689 (2003)

    Article  CAS  Google Scholar 

  32. K. Chitra, K. Reena, A. Manikandan et al., Antibacterial studies and effect of poloxamer on gold nanoparticles by zingiber officinale extracted green synthesis. J. Nanosci. Nanotechnol. 15, 4984–4991 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. K. Chitra, A. Manikandan, S. Moortheswaran et al., Zingiber officinale extracted green synthesis of copper nanoparticles: structural, morphological and antibacterial studies. Adv. Sci. Eng. Med. 7, 710–716 (2015)

    Article  CAS  Google Scholar 

  34. M. Vasanthi, K. Ravichandran, N. Jabena Begum, G. Muruganantham, S. Snega, A. Panneerselvam, P. Kavitha, Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. 55, 180 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Selvaraju.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraju, C., Karthick, R. & Veerasubam, R. The Modification of Structural, Optical and Antibacterial Activity Properties of Rare Earth Gadolinium-Doped ZnO Nanoparticles Prepared by Co-Precipitation Method. J Inorg Organomet Polym 29, 776–782 (2019). https://doi.org/10.1007/s10904-018-1051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1051-0

Keywords

Navigation