Skip to main content
Log in

Correlation of grain size, phase transition and piezoelectric properties in Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pb-free ceramics Ba0.85Ca0.15Ti0.90Zr0.10O3 inspired by the excellent piezoelectricity of morphotropic phase boundary deriving from a tricritical point have been prepared by a solid state reaction route and the effects of grain size and room-temperature phases of the ceramics have been studied in detail. When sintering temperature rises from 1320 to 1560 °C with controlling the dwell time for 2 h, the ceramic sintered at 1480 °C possesses the optimum piezoelectricity. We choose 1360 and 1480 °C as two distinctive sintering temperatures to further study the effect of dwell time on the electrical properties of the ceramics. The results show that the improved piezoelectric behavior (d 33 ~ 416 pC/N and k p ~ 55.8 %) is demonstrated for the Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramic at an optimal sintering temperature of 1480 °C and dwell time of 2 h, which is attributed to the largest grain size together with more noticeable rhombohedral–tetragonal phase transition near room-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809–810 (1954)

    Article  Google Scholar 

  2. V.M. Goldschmidt, Trans. Faraday Soc. 25, 253–283 (1929)

    Article  Google Scholar 

  3. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, New York, 1971)

    Google Scholar 

  4. R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423–5426 (2000)

    Article  Google Scholar 

  5. W. Cao, L.E. Cross, Phys. Rev. B. 47, 4825–4830 (1993)

    Article  Google Scholar 

  6. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687–8695 (2000)

    Article  Google Scholar 

  7. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  8. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)

    Article  Google Scholar 

  9. X. Ren, Nat. Mater. 3, 91–94 (2004)

    Article  Google Scholar 

  10. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25, 2693–2700 (2005)

    Article  Google Scholar 

  11. E. Cross, Nature 432, 24–25 (2004)

    Article  Google Scholar 

  12. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  13. R. Bechmann, J. Acoust. Soc. Am. 28, 347–350 (1956)

    Article  Google Scholar 

  14. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  15. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Am. Ceram. Soc. 93, 2942–2944 (2010)

    Article  Google Scholar 

  16. D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, J. Appl. Phys. 109, 054110 (2011)

    Article  Google Scholar 

  17. H. Bao, C. Zhou, D. Xue, J. Gao, X. Ren, J. Phys. D: Appl. Phys. 43, 465401 (2010)

    Article  Google Scholar 

  18. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Mater. Sci. Eng. B 176, 65–67 (2011)

    Article  Google Scholar 

  19. C. Han, J. Wu, C. Pu, S. Qiao, B. Wu, J. Zhu, D. Xiao, Ceram. Int. 38, 6359–6363 (2012)

    Article  Google Scholar 

  20. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr. Mater. 65, 771–774 (2011)

    Article  Google Scholar 

  21. M. Jiang, Q. Lin, D. Lin, Q. Zheng, X. Fan, X. Wu, H. Sun, Y. Wan, L. Wu, J. Mater. Sci. 48, 1035–1041 (2013)

    Article  Google Scholar 

  22. Y. Cui, X. Liu, M. Jiang, X. Zhao, X. Shan, W. Li, C. Yuan, C. Zhou, Ceram. Int. 38, 4761–4764 (2012)

    Article  Google Scholar 

  23. Q. Lin, M. Jiang, D. Lin, Q. Zheng, X. Wu, X. Fan, J. Mater. Sci. Mater. Electron. 24, 734–739 (2013)

    Article  Google Scholar 

  24. J. Hao, W. Bai, W. Li, J. Zhai, J. Am. Ceram. Soc. 95, 1998–2006 (2012)

    Article  Google Scholar 

  25. J. Wu, D. Xiao, B. Wu, W. Wu, J. Zhu, Z. Yang, J. Wang, Mater. Res. Bull. 47, 1281–1284 (2012)

    Article  Google Scholar 

  26. P. Wang, Y.X. Li, Y.Q. Lu, J. Eur. Ceram. Soc. 31, 2005–2012 (2011)

    Article  Google Scholar 

  27. P. Mishra, Sonia, P. Kumar, J. Alloys Compd. 545, 210–215 (2012)

    Article  Google Scholar 

  28. J. Wu, D. Xiao, W. Wu, J. Zhu, J. Wang, J. Alloys Compd. 509, L359–L361 (2011)

    Article  Google Scholar 

  29. S. Su, R. Zuo, S. Lu, Z. Xu, X. Wang, L. Li, Curr. Appl. Phys. 11, S120–S123 (2011)

    Article  Google Scholar 

  30. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443–446 (1969)

    Article  Google Scholar 

  31. T.B. Weston, A.H. Webster, V.M. McNamara, J. Am. Ceram. Soc. 52, 253–257 (1969)

    Article  Google Scholar 

  32. T. Senda, R.C. Bradt, J. Am. Ceram. Soc. 73, 106–114 (1990)

    Article  Google Scholar 

  33. A. Reyes-Montero, L. Pardo, R. López-Juárez, A.M. González, M.P. Cruz, M.E. Villafuerte-Castrejón, J. Alloys Compd. 584, 28–33 (2014)

    Article  Google Scholar 

  34. S.W. Zhang, H. Zhang, B.P. Zhang, G. Zhao, J. Eur. Ceram. Soc. 29, 3235–3242 (2009)

    Article  Google Scholar 

  35. H.J. Avila-Paredes, C.T. Chen, S. Wang, R.A. De Souza, M. Martin, Z. Munir, S. Kim, J. Mater. Chem. 20, 10110–10112 (2010)

    Article  Google Scholar 

  36. R. Hagenbeck, R. Waser, J. Appl. Phys. 83, 2083–2092 (1998)

    Article  Google Scholar 

  37. F. Shojai, T.A. Mäntylä, J. Mater. Sci. 36, 3437–3446 (2001)

    Article  Google Scholar 

  38. C. Herring, J. Appl. Phys. 21, 301–303 (1950)

    Article  Google Scholar 

  39. W. Cao, C.A. Randall, J. Phys. Chem. Solids 57, 1499–1505 (1996)

    Article  Google Scholar 

  40. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677–688 (1998)

    Article  Google Scholar 

  41. M. Demartin, D. Damjanovic, Appl. Phys. Lett. 68, 3046–3048 (1996)

    Article  Google Scholar 

  42. C.S. Yu, H.L. Hsieh, J. Euro. Ceram. Soc. 25, 2425–2427 (2005)

    Article  Google Scholar 

  43. Y. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 3953–3959 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Education Department of Sichuan Province (15ZA0037, 15ZB0032), Science and Technology Bureau of Sichuan Province (2014JY0040), and the Hong Kong Polytechnic University internal research account 1–ZV9B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H.L., Zheng, Q.J., Wan, Y. et al. Correlation of grain size, phase transition and piezoelectric properties in Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. J Mater Sci: Mater Electron 26, 5270–5278 (2015). https://doi.org/10.1007/s10854-015-3063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3063-7

Keywords

Navigation