Skip to main content
Log in

Effect of TiO2 nanoparticle addition and cooling rate on microstructure and mechanical properties of novel Sn1.5Sb0.7Cu solders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of TiO2 nanoparticles and cooling rate on the microstructure and mechanical properties of Sn1.5Sb0.7Cu alloy were investigated. A higher cooling rate and TiO2 nanoparticles refined the primary β-Sn dendrites, Cu6Sn5 and SbSn phase. Especially, the microstructure of the Sn1.5Sb0.7Cu composite solders under the rapid-cooled condition exhibited fine dot-like Cu6Sn5 in the eutectic regions. The improvement in strength was mostly attributed to (1) refinement of the β-Sn grain size; (2) the Orowan strengthening effect; (3) CTE mismatch between reinforcement second phase particles (Cu6Sn5 and TiO2) and the matrix; and (4) the load-bearing effect. However, the total elongation of the composite solders was observed to decrease because of micro-voids both at and along the Cu6Sn5 grain boundary regions. The fracture surfaces of all Sn1.5Sb0.7Cu composite solder were confirmed to exhibit the ductile fracture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.N. Tu, K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. R 34, 1–58 (2001)

    Article  Google Scholar 

  2. L.C. Tsao, R.W. Wu, T.H. Cheng, K.H. Fan, R.S. Chen, Effects of nano-Al2O3 particles on microstructure and mechanical properties of Sn3.5Ag0.5Cu composite solder ball grid array joints on Sn/Cu pads. Mater. Des. 50, 774–781 (2013)

    Article  Google Scholar 

  3. H.J. Lin, T.H. Chuang, Interfacial microstructure and bonding strength of Sn–3Ag–0.5Cu and Sn–3Ag–0.5Cu–0.5Ce–XZn solder BGA packages with immersion Ag surface finish. Microelectron. Reliab. 51, 445–452 (2011)

    Article  Google Scholar 

  4. L.C. Tsao, C.P. Chu, S.F. Peng, Study of interfacial reactions between Sn3.5Ag0.5Cu composite alloys and Cu substrate. Microelectron. Eng. 88, 2964–2969 (2011)

    Article  Google Scholar 

  5. C.L. Chuang, L.C. Tsao, H.K. Lin, L.P. Feng, Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder. Mater. Sci. Eng. A 558, 478–484 (2012)

    Article  Google Scholar 

  6. K.S. Kim, S.H. Huh, K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloys Compd. 352, 226–236 (2003)

    Article  Google Scholar 

  7. W.M. Xiao, Y.W. Shi, Y.P. Lei, Z.D. Xia, F. Guo, Comparative study of microstructures and properties of three valuable SnAgCuRE lead-free solder alloys. J. Electron. Mater. 35, 1095–1103 (2006)

    Article  Google Scholar 

  8. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014)

    Article  Google Scholar 

  9. L.C. Tsao, S.Y. Chang, Effects of nano-TiO2 additions on thermal analysis, microstructure and tensile properties of Sn3.5Ag0.25Cu solder. Mater. Des. 31, 990–993 (2010)

    Article  Google Scholar 

  10. L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Chiang, Effects of Nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31, 4831–4835 (2010)

    Article  Google Scholar 

  11. J. Shen, Y.C. Liu, D.J. Wang, H.X. Gao, Nano ZrO2 particulate-reinforced lead-free solder composite. J. Mater. Sci. Technol. 22, 529–532 (2006)

    Article  Google Scholar 

  12. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Novel SiC nanoparticles-containing Sn–1.0Ag–0.5Cu solder with good drop impact performance. Mater. Sci. Eng. A 578, 62–71 (2013)

    Article  Google Scholar 

  13. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Thermal analysis and mechanical properties of Sn–1.0Ag–0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci.: Mater. Electron. 24, 2976–2988 (2013)

    Google Scholar 

  14. Y. S. Park, Y. M. Kwon, H. Y. Son, J. T. Moon, Effect of Sb addition in Sn–Ag–Cu solder balls on the drop test reliability of BGA packages with electroless nickel immersion gold (ENIG) surface finish. In: Electronic Material and Packaging, 2007

  15. A.A. El-Daly, A.E. Hammad, A. Fawzy, D.A. Nasrall, Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater. Des. 43, 40–49 (2013)

    Article  Google Scholar 

  16. H.S. Güdera, E. Şahina, O. Şahina, H. Göçmezb, C. Duranc, Vickers and Knoop Indentation Microhardness Study of β-SiAlON Ceramic. Acta Phys. Pol. A 120, 1026–1033 (2011)

    Google Scholar 

  17. T.H. Chuang, L.C. Tsao, C.H. Chung, S.Y. Chang, Evolution of Ag3Sn compounds and microhardness of Sn3.5Ag0.5Cu nano-composite solders during different cooling rate and aging. Mater. Des. 39, 475–483 (2012)

    Article  Google Scholar 

  18. A.R. Geranmayeh, R. Mahmudi, M. Kangooie, High-temperature shear strength of lead-free Sn–Sb–Ag/Al2O3 composite solder. Mater. Sci. Eng. A 528, 3967–3972 (2011)

    Article  Google Scholar 

  19. T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, W.K.C. Yung, Influence of SrTiO3 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. J. Alloys Compd. 509, 1885–1892 (2011)

    Article  Google Scholar 

  20. A.A. El-Daly, T.A. Elmosalami, W.M. Desoky, M.G. El-Shaarawy, A.M. Abdraboh, Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder. Mater. Sci. Eng. A 17, 389–3973 (2014)

    Article  Google Scholar 

  21. C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3.5AgXCu solder. Mater. Des. 32, 4720–4727 (2011)

    Article  Google Scholar 

  22. L.C. Tsao, Suppressing effect of 0.5 wt% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J. Alloys Compd. 509, 8441–8448 (2011)

    Article  Google Scholar 

  23. L.C. Tsao, Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J. Alloys Compd. 509, 2326–2333 (2011)

    Article  Google Scholar 

  24. X.L. Zhong, M. Gupta, Development of lead-free Sn–0.7Cu/Al2O3 nanocomposite solders with superior strength. J. Phys. D: Appl. Phys. 41, 095403–095409 (2008)

    Article  Google Scholar 

  25. J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477, 552–559 (2009)

    Article  Google Scholar 

  26. E.S. Gouda, Effect of cooling rate on structure and creep behavior of Sn0.7Cu0.5Zn lead-free solder alloy. Eur. Phys. J. Appl. Phys. 48, 20902–20906 (2009)

    Article  Google Scholar 

  27. J.M. Song, J.J. Lin, C.F. Huang, H.Y. Chuang, Crystallization, morphology and distribution of Ag3Sn in Sn–Ag–Cu alloys and their influence on the vibration fracture properties. Mater. Sci. Eng. A 466, 9–17 (2007)

    Article  Google Scholar 

  28. L.C. Tsao, An investigation of microstructure and mechanical properties of novel Sn3.5Ag0.5Cu–XTiO2 composite solders as functions of alloy composition and cooling rate. Mater. Sci. Eng. A 529, 41–48 (2011)

    Article  Google Scholar 

  29. W.D. Callister, Fundamentals of Materials Science and Engineering, 2nd edn. (Wiley, New York, 2004), p. 252

    Google Scholar 

  30. I. Shao, P.M. Verrcken, C.L. Chien, P.C. Searson, R.C. Cammarata, Synthesis and characterization of particle-reinforced Ni/Al2O3 nanocomposite. J. Mater. Res. 17, 1412–1418 (2002)

    Article  Google Scholar 

  31. L. Thilly, M. Veron, O. Ludwig, F. Lecourterier, Deformation mechanism in high strength Cu/Nb nanocomposites. Mater. Sci. Eng. A 309–310, 510–513 (2001)

    Article  Google Scholar 

  32. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, New York, 1986), p. 325

    Google Scholar 

  33. Q. Zhang, D.L. Chen, A model for predicting the particle size dependence of the low cycle fatigue life in discontinuously reinforced MMCs. Scr. Mater. 51, 863–867 (2004)

    Article  Google Scholar 

  34. L.H. Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos. Sci. Technol. 61, 1057–1063 (2001)

    Article  Google Scholar 

  35. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483–484, 148–152 (2008)

    Article  Google Scholar 

  36. M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, W.J. Blau, Mechanical properties and morphology of carbon nanotube reinforced semi crystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123–5125 (2002)

    Article  Google Scholar 

  37. S.M.L. Nai, J. Wei, M. Gupta, Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes. Mater. Sci. Eng. A 423, 166–169 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this work from the Ministry of Science and Technology, Taiwan, under Project No. MOST 103-2221-E-020-014. SEM was performed by the Precision Instrument Center of National Pingtung University of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Tsao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C.H., Chen, CH., Chang, S.Y. et al. Effect of TiO2 nanoparticle addition and cooling rate on microstructure and mechanical properties of novel Sn1.5Sb0.7Cu solders. J Mater Sci: Mater Electron 26, 3493–3501 (2015). https://doi.org/10.1007/s10854-015-2860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2860-3

Keywords

Navigation