Skip to main content
Log in

Various morphologies of nano/micro PbS via green hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS) with various morphologies including nanoparticle, microrod, octahedral, cubic, six-armed microstar, dendrite structure and hexagonal disc were synthesized under hydrothermal conditions. The synthesis variables such as the pH of solution, kind of surfactant, reaction temperature and time were observed to influence the final shape of PbS microstructures. The structure and morphology of obtained products were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. UV–Vis spectroscopy showed the direct band gap of ~5.8 eV for the PbS microstar that is a large increment compared with that of bulk PbS. The photoluminescence measurements showed that the emission peaks were located at 712 nm. A possible formation mechanism of PbS microcrystals was discussed based on their shape evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  Google Scholar 

  2. P. Gadenne, Y. Yagil, G.J. Deutscher, J. Appl. Phys. 66, 3019 (1989)

    Article  Google Scholar 

  3. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004)

    Article  Google Scholar 

  4. R.S. Kane, R.E. Cohen, R. Silbey, J. Phys. Chem. 100, 7928 (1996)

    Article  Google Scholar 

  5. C.L. Lu, C. Guan, Y.F. Liu, Y.R. Cheng, B. Yang, Chem. Mater. 17, 2448 (2005)

    Article  Google Scholar 

  6. O. Hayden, R. Agarwal, C.M. Lieber, Nat. Mater. 5, 352 (2006)

    Article  Google Scholar 

  7. L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, Adv. Mater. 16, 926 (2004)

    Article  Google Scholar 

  8. S. Jana, S. Goswamib, S. Nandya, K.K. Chattopadhyay, J. Alloy. Compd. 481, 806 (2009)

    Article  Google Scholar 

  9. N. Zhao, L.M. Qi, Adv. Mater. 18, 359 (2006)

    Article  Google Scholar 

  10. R. Hawaldar, U. Mulik, K. Patil, R. Pasricha, S. Sathaye, A. Lewis, D. Amalnerkar, Mater. Res. Bull. 40, 1353 (2005)

    Article  Google Scholar 

  11. G.J. Zhou, M.K. Lu, Z.L. Xiu, S.F. Wang, H.P. Zhang, Y.Y. Zhou, S.M. Wang, J. Phys. Chem. B 110, 6543 (2006)

    Article  Google Scholar 

  12. T. Trindade, P.O. Brien, X.M. Zhang, M. Motevalli, J. Mater. Chem. 7, 1011 (1997)

    Article  Google Scholar 

  13. J.M. Luther, H.M. Zheng, B. Sadtler, A.P. Alivisatos, J. Am. Chem. Soc. 131, 16851 (2009)

    Article  Google Scholar 

  14. S. Wang, S. Yang, Langmuir 16, 389 (2000)

    Article  Google Scholar 

  15. Y. Ma, L. Qi, J. Ma, H. Cheng, Cryst. Growth Des. 4, 351 (2004)

    Article  Google Scholar 

  16. Y. Ni, H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, Cryst. Growth Des. 4, 759 (2004)

    Article  Google Scholar 

  17. D.B. Fan, P.J. Thomas, P.O. Brien, J. Am. Chem. Soc. 130, 10892 (2008)

    Article  Google Scholar 

  18. Y.L. Hou, H. Kondoh, T. Ohta, Cryst. Growth Des. 9, 3119 (2009)

    Article  Google Scholar 

  19. D. Yu, D. Wang, Z. Meng, J. Lu, Y. Qian, J. Mater. Chem. 12, 403 (2002)

    Article  Google Scholar 

  20. D. Yu, D. Wang, Z. Meng, J. Lu, Y. Qian, J. Cryst. Growth 249, 195 (2003)

    Article  Google Scholar 

  21. J. Xu, D.F. Xue, J. Phys. Chem. B 110, 7750 (2006)

    Article  Google Scholar 

  22. M. Salavati-Niasari, M.R. Loghman-Estarki, F. Davar, Inorg. Chim. Acta 362, 3677 (2009)

    Article  Google Scholar 

  23. Y. Liu, G. Xi, S. Chen, X. Zhang, Y. Zhu, Y.T. Qian, Nanotechnology 18, 285605 (2007)

    Article  Google Scholar 

  24. D.B. Kuang, A.W. Xu, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, Adv. Mater. 15, 1747 (2003)

    Article  Google Scholar 

  25. H.R. Liu, W.F. Miao, S. Yang, Z.M. Zhang, J.F. Chen, Cryst. Growth Des. 9, 1733 (2009)

    Article  Google Scholar 

  26. F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, Cryst. Eng. Commun. 14, 7338 (2012)

    Article  Google Scholar 

  27. M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, Z. Hamidi, Ceram. Int. 39, 3173 (2013)

    Article  Google Scholar 

  28. C. Schliehe, B.H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Krnowski, C. Klinke, H. Weller, Science 329, 550 (2010)

    Article  Google Scholar 

  29. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y.C. Cao, W.A. Bassett, H. Wu, H. Fan, H. Weller, J. Am. Chem. Soc. 133, 14484 (2011)

    Article  Google Scholar 

  30. G. Pandey, S. Shrivastav, H.K. Sharma, Phys. E 56, 386 (2014)

    Article  Google Scholar 

  31. T. Mokari, M.J. Zhang, P.D. Yang, J. Am. Chem. Soc. 129, 9864 (2007)

    Article  Google Scholar 

  32. T.J. Zhu, X. Chen, Y.Q. Cao, X.B. Zhao, J. Phys. Chem. C 113, 8085 (2009)

    Article  Google Scholar 

  33. M. Bashouti, E. Lifshitz, Inorg. Chem. 47, 678 (2008)

    Article  Google Scholar 

  34. Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000)

    Article  Google Scholar 

  35. K.K. Nanda, F.E. Kruis, H. Fissan, M. Acet, J. Appl. Phys. 91, 2315 (2002)

    Article  Google Scholar 

  36. M.F. Acosta, M.S. Lerma, H.A. Chavez, F.F.C. Barraza, R.R. Bon, Solid State Commun. 128, 407 (2003)

    Article  Google Scholar 

  37. H. Cao, G. Wang, S. Zhang, X. Zhang, Nanotechnology 17, 3280 (2006)

    Article  Google Scholar 

  38. W.S. Chae, H.W. Shin, E.S. Lee, E.J. Shin, J.S. Jung, Y.R. Kim, J. Phys. Chem. B 109, 6204 (2005)

    Article  Google Scholar 

  39. E. Pintia, L. Pintilie, I. Matei, T. Botila, I. Pintilie, Infrared Phys. Technol. 44, 207 (2003)

    Article  Google Scholar 

  40. C.B. Murry, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 1158706, 8706 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Kharazmi University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohammadikish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadikish, M., Davar, F. & Loghman-Estarki, M.R. Various morphologies of nano/micro PbS via green hydrothermal method. J Mater Sci: Mater Electron 26, 2937–2946 (2015). https://doi.org/10.1007/s10854-015-2780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2780-2

Keywords

Navigation