Skip to main content
Log in

Study of electrophoretic deposition of ZnS:Ag/CNT composites for luminescent applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In present work, electrophoretic deposition of novel photoluminescence (PL) composites of ZnS:Ag/carbon nano tube (CNT) on the surface of Al substrates was investigated. In deposition process, CNT concentration and applied coating voltage were studied as the effective parameters. Deposition weight showed the reverse relationship with the amount of concentration and direct dependence to the applied voltages. Furthermore, current densities were decreased with increasing CNT concentrations up to 12.5 wt%, and increased strongly with further CNT concentrations. Moreover, applied voltage and current density show the same positive trends. Other results revealed that PL emission intensities were significantly quenched with increasing the CNT concentration. Nevertheless, PL intensities were improved with increasing applied voltage up to 300 V, but reduced with further voltage increase. Morphological studies of ZnS:Ag/CNT composites confirmed that the intertwined architecture was formed by wrapping of CNTs on the surfaces of ZnS microsize particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  Google Scholar 

  2. M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes. In Carbon Nanotubes, Topics in Applied Physics, vol. 111, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer-Verlag, Berlin Heidelberg, 2008), pp. 13–62

  3. E.T. Thostensona, Z. Renb, T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  4. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  5. L. Bokobza, Multiwall carbon nanotube elastomeric composites: a review. Polymer 48, 4907–4920 (2007)

    Article  Google Scholar 

  6. J. Echeberria, N. Rodríguez, J. Vleugels, K. Vanmeensel, A. Reyes-Rojas, A. Garcia-Reyes, C. Domínguez-Rios, A. Aguilar-Elguézabal, M.H. Bocanegra-Bernal, Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50, 706–717 (2012)

    Article  Google Scholar 

  7. M. Michálek, J. Sedláček, M. Parchoviansky, M. Michálková, D. Galusek, Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram. Int. 40, 1289–1295 (2014)

    Article  Google Scholar 

  8. C. Huang, C. Yeh, Y. Chang, Y. Hsieh, C. Ku, Q. Lai, Field emission properties of CNT–ZnO composite materials. Diam. Relat. Mater. 18, 452–456 (2009)

    Article  Google Scholar 

  9. Z. Hu, S. Dong, J. Hu, B. Lu, Fabrication and properties analysis of Cf–CNT/SiC composite. Ceram. Int. 39, 2147–2152 (2013)

    Article  Google Scholar 

  10. F. Mendoza, V.D.M. Hernández, V. Makarov, E. Febus, Brad R. Weiner, G. Morell, Room temperature gas sensor based on tin dioxide-carbon nanotubes composite films. Sens. Actuators B: Chem. 190, 227–233 (2014)

    Article  Google Scholar 

  11. Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity under artificial light. Compos. B Eng. 57, 105–111 (2014)

    Article  Google Scholar 

  12. O. Valentino, M. Sarno, N.G. Rainone, M.R. Nobile, P. Ciambelli, H.C. Neitzert, G.P. Simon, Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys. E 40, 2440–2445 (2008)

    Article  Google Scholar 

  13. M.K. Singla, H. Singh, V. Chawla, Thermal sprayed CNT reinforced nanocomposite coatings—a review. J. Miner. Mater. Charact. Eng. 10, 717–726 (2011)

    Google Scholar 

  14. K. Sun, J. Yu, C. Zhang, X. Zhou, In situ growth carbon nanotube reinforced SiC/SiC composite. Mater. Lett. 66, 92–95 (2012)

    Article  Google Scholar 

  15. K. König, S. Novak, A. Ivekovič, K. Rade, D. Meng, A.R. Boccaccini, S. Kobe, Fabrication of CNT -SiC/SiC composites by electrophoretic deposition. J. Eur. Ceram. Soc. 30, 1131–1137 (2010)

    Article  Google Scholar 

  16. M.C. Schausten, D. Meng, R. Telle, A.R. Boccaccini, Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings. Ceram. Int. 36, 307–312 (2010)

    Article  Google Scholar 

  17. B. Ferrari, R. Moreno, EPD kinetics: a review. J. Eur. Ceram. Soc. 30, 1069–1078 (2010)

    Article  Google Scholar 

  18. B. Raissi, E. Marzbanrad, A.R. Gardeshzadeh, Particle size separation by alternating electrophoretic deposition. J. Eur. Ceram. Soc. 29, 3289–3291 (2009)

    Article  Google Scholar 

  19. I. Corni, M.P. Ryan, A.R. Boccaccini, Electrophoretic deposition: from traditional ceramics to nanotechnology. J. Eur. Ceram. Soc. 28, 1353–1367 (2008)

    Article  Google Scholar 

  20. C. Du, D. Heldbrant, N. Pan, Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition. Mater. Lett. 57, 434–438 (2002)

    Article  Google Scholar 

  21. S. Wang, B. Huang, Field emission properties of Ag/SiO2/carbon nanotube films by pulsed voltage co-electrophoretic deposition. Thin Solid Films 517, 1245–1250 (2008)

    Article  Google Scholar 

  22. I. Zhitomirsky, A. Petric, Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20, 2055–2061 (2000)

    Article  Google Scholar 

  23. J.J. Moore, J.H. Kang, J.Z. Wen, Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Mater. Chem. Phys. 134, 68–73 (2012)

    Article  Google Scholar 

  24. H. Chen, Y. Li, Y. Feng, P. Lv, P. Zhang, W. Feng, Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor. Electrochim. Acta 60, 449–455 (2012)

    Article  Google Scholar 

  25. C.Y. Chen, T.C. Chien, Yu-C Chan, C.K. Lin, S.C. Wang, Pseudocapacitive properties of carbon nanotube/manganese oxide electrode deposited by electrophoretic deposition. Diam. Relat. Mater. 18, 482–485 (2009)

    Article  Google Scholar 

  26. T. Bordjiba, D.l Bélanger, Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta 55, 3428–3433 (2010)

    Article  Google Scholar 

  27. A.C. Valdez, M. Herrmann, A.R. Boccaccini, Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions. J. Colloid Interface Sci. 375, 102–105 (2012)

    Article  Google Scholar 

  28. A. Vázquez, I. López, I. Gómez, Growth of one-dimensional zinc sulfide nanostructures through electrophoretic deposition. Mater. Lett. 65, 2422–2425 (2011)

    Article  Google Scholar 

  29. W. Chartarrayawadeea, S.E. Moultona, D. Li, C.O. Tooa, G.G. Wallacea, Novel composite graphene/platinum electro-catalytic electrodes prepared by electrophoretic deposition from colloidal solutions. Electrochim. Acta 60, 213–223 (2012)

    Article  Google Scholar 

  30. J.S. Zheng, M.X. Wang, X.S. Zhang, Y.X. Wu, P. Li, X.G. Zhou, W.K. Yuan, Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction. J. Power Sources 175, 211–216 (2008)

    Article  Google Scholar 

  31. Y.L. Min, Z.C. Chun, Field emission characteristics study for ZnO/Ag and ZnO/CNTs composites produced by DC electrophoresis. Appl. Surf. Sci. 255, 8359–8362 (2009)

    Article  Google Scholar 

  32. J. Cho, K. Konopka, Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon 47, 58–67 (2009)

    Article  Google Scholar 

  33. A.K. Nair, Z. Qin, M.J. Buehler, Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. Int. J. Solids Struct. 49, 2418–2423 (2012)

    Article  Google Scholar 

  34. G. Chena, L. Zhang, H. Ma, N. Yaoa, B. Zhang, Carbon nanotubes cathode of field emission lamp prepared by electrophoretic deposition. Energy Procedia 16(Part A), 240–243 (2012)

    Article  Google Scholar 

  35. J.H. Park, B.W. Park, Cathodoluminescent and thermal properties of carbon nanotube_ZnS:Cu, Al phosphor composites. Solid State Commun. 148, 573–576 (2008)

    Article  Google Scholar 

  36. C. Kaya, F. Kaya, A.R. Boccaccini, Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta Mater. 49, 1189–1197 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Shafiee Afarani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naeimi, A., Arabi, A.M., Gardeshzadeh, A.R. et al. Study of electrophoretic deposition of ZnS:Ag/CNT composites for luminescent applications. J Mater Sci: Mater Electron 25, 1575–1582 (2014). https://doi.org/10.1007/s10854-014-1771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1771-z

Keywords

Navigation