Skip to main content
Log in

Preparation and characterizations of tungsten oxide electrochromic nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoscaled tungsten oxide thin films were fabricated by galvanostatic electrodeposition. The effect of preparation parameters such as tungsten ions concentration, pH, current density and annealing on the properties and performance of WO3 thin films electrochromic materials was investigated. XRD, SEM–EDS, TEM, FTIR, UV–VIS spectrophotometry, and electrochemical measurements were utilized to characterize the structural and compositional properties as well as the electrochromic behaviour of the prepared thin films. Triclinic WO3 structure was prepared at 0.1 M W+ and current density of 0.5 mA cm−2, while at 0.2 M W+ and 1 mA cm−2, orthorhombic structure was revealed. High energy gap of 3.5 eV with diffusion coefficient of 6.81 × 10−11 cm2 S−1 and coloration efficiency of 62.68 cm2 C−1 were obtained for the films prepared at pH 2, 1 mA cm−2, and 0.1 M W+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Sivakumar, M. Jayachandran, C. Sanjeeviraja, Mater. Chem. Phys. 87, 439 (2004)

    Article  CAS  Google Scholar 

  2. E. Avendano, L. Berggren, G.A. Niklasson, C.G. Granqvist, A. Azens, Thin Solid Films 496, 30 (2006)

    Article  CAS  ADS  Google Scholar 

  3. T. Yang, Z. Lin, M. Wong, Appl. Surf. Sci. 252, 2029–2037 (2005)

    Article  CAS  ADS  Google Scholar 

  4. S.K. Komornicki, M. Radecka, P. Sobas, J. Mater. Sci.: Mater. Electron. 15, 524 (2004)

    Article  Google Scholar 

  5. L.M. Di Giulio, D. Manno, G. Micocci, A. Serra, A. Tepore, J. Mater. Sci.: Mater. Electron. 9, 317 (1998)

    Article  CAS  Google Scholar 

  6. S.A. Agnihotry, Sol. Energy Mater. Sol. Cells 90, 15 (2006)

    Article  CAS  Google Scholar 

  7. P.S. Patil, S.H. Mujawar, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, S.B. Sadale, Appl. Surf. Sci. 252, 1643 (2005)

    Article  CAS  ADS  Google Scholar 

  8. C.O. Avellaneda, L.O.S. Bulhoes, Sol. Energy Mater. Sol. Cells 90, 395 (2006)

    Article  CAS  Google Scholar 

  9. A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, Appl. Surf. Sci. 252, 1568 (2005)

    Article  ADS  Google Scholar 

  10. R. Vijayalakshmi, M. Jayachandran, C. Sanjeeviraja, Curr. Appl. Phys. 3, 171 (2003)

    Article  Google Scholar 

  11. S.H. Baeck, T.F. Jaramillo, C. Brandli, E.W. McFarland, J. Comb. Chem. 4, 563 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. A.A. Khokhlov, L.V. Pugolovkin, M.I. Borzenko, G.A. Tsirlina, Electrochemica. Acta. 54, 5439 (2009)

    Article  Google Scholar 

  13. M. Deepa, A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad, Appl. Surf. Sci. 254, 2342 (2008)

    Article  CAS  ADS  Google Scholar 

  14. M. Deepa, A.K. Srivastava, Sol. Energy Mater. Sol. Cells 92, 170 (2008)

    Article  CAS  Google Scholar 

  15. G.A. Tsirlina, Solid State Ionics 176, 1681 (2005)

    Article  CAS  Google Scholar 

  16. Y.S. Krasnov, G.Y. Kolbasov, Electrochim. Acta. 49, 2425 (2004)

    Article  CAS  Google Scholar 

  17. M. Fathy, A. B. Kashyout, M. Soliman, in International conference on sustainable energy; Technologies, materials and environmental issues, Cairo, Egypt, (2007), p. 21

  18. Z. Yu, X. Jia, J. Du, J. Zhang, Sol. Energy Mater. Sol. Cells 64, 55 (2000)

    Article  CAS  Google Scholar 

  19. A.K. Srivastava, M. Deepa, S. Singha, R. Kishore, S.A. Agnihotry, Solid State Ionics 176, 1161 (2005)

    Article  CAS  Google Scholar 

  20. A.L. Larsson, G.A. Niklasson, Sol. Energy Mater. Sol. Cells 84, 351 (2004)

    Article  CAS  Google Scholar 

  21. C. Liao, F. Chen, J. Kai, Sol. Energy Mater. Sol. Cells 90, 1147 (2006)

    Article  CAS  Google Scholar 

  22. R. Vijayalakshmi, M. Jayachandran, D.C. Trivedi, C. Sanjeeviraja, Ionics 10, 151 (2004)

    Article  CAS  Google Scholar 

  23. A.G.S. Fihlo, V.N. Freire, J.M. Sasaki, J.M. Fihlo, J.F. Juliao, U.U. Gomes, J. Raman Spectrosc. 31, 451 (2000)

    Article  ADS  Google Scholar 

  24. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201–262 (2000)

    Article  CAS  Google Scholar 

  25. A. Siokou, S. Ntais, S. Papaefthimiou, G. Leftheriotis, P. Yianoulis, Surf. Sci. 566–568, 1168 (2004)

    Article  Google Scholar 

  26. G.A. Niklasson, L. Berggren, A. Jonsson, R. Ahuja, N.V. Skorodumova, J. Backholm, M. Stromme, Sol. Energy Mater. Sol. Cells 90, 385 (2006)

    Article  CAS  Google Scholar 

  27. J. Zhang, J.P. Tu, X.H. Xia, Y. Qiao, Y. Lub, Sol. Energy Mater. Sol. Cells 93, 2009 (1840)

    Google Scholar 

  28. N.R. de Tacconi, C.R. Chenthamarakshan, K.L. Wouters, F.M. MacDonnell, K. Rajeshwar, J. Electroanal. Chem. 566, 249–256 (2004)

    Article  Google Scholar 

  29. M. Deepa, R. Sharma, A. Basu, S.A. Agnihotry, Electrochim. Acta. 50, 3545–3555 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kashyout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soliman, H.M.A., Kashyout, A.B., El Nouby, M.S. et al. Preparation and characterizations of tungsten oxide electrochromic nanomaterials. J Mater Sci: Mater Electron 21, 1313–1321 (2010). https://doi.org/10.1007/s10854-010-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-010-0068-0

Keywords

Navigation