Skip to main content
Log in

Selective growth of carbon nanotubes using catalyst poisoning and geometric trench

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work suggests catalyst poisoning and geometric patterned approaches to selectively grow multiwall carbon nanotubes. Ferromagnetic particles as a catalyst for CNTs growth vanish when they are deposited over an aluminum thin film. Additionally, geometric features, such as trenches or cavities, are revealed to be capable of selectively ceasing the growth of CNTs even though catalytic thin films were covered on entire samples by an atmospheric thermal chemical vapor deposition technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992). doi:10.1103/PhysRevLett.68.1579

    Article  CAS  PubMed  ADS  Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 54 (1996). doi:10.1038/382054a0

    Article  CAS  ADS  Google Scholar 

  3. J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Appl. Phys. Lett. 75, 367 (1999). doi:10.1063/1.124377

    Article  CAS  ADS  Google Scholar 

  4. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992). doi:10.1103/PhysRevB.46.1804

    Article  CAS  ADS  Google Scholar 

  5. J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon 40, 1715–1728 (2002). doi:10.1016/S0008-6223(02)00011-8

    Article  CAS  Google Scholar 

  6. S. Saito, Science 278, 77 (1997). doi:10.1126/science.278.5335.77

    Article  CAS  Google Scholar 

  7. W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). doi:10.1126/science.270.5239.1179

    Article  ADS  Google Scholar 

  8. H.H. Chen, W.Y. Uen, C.T. Ku, S.M. Lan, T.N. Yang, Z.-Y. Li, C.-C. Chiang, J. Mater. Sci: Mater. Electron. 20, 407 (2009). doi:10.1007/s10854-008-9646-9

    Article  Google Scholar 

  9. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). doi:10.1126/science.283.5401.512

    Article  CAS  PubMed  ADS  Google Scholar 

  10. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395, 878 (1998). doi:10.1038/27632

    Article  CAS  ADS  Google Scholar 

  11. H. Ago, K. Murata, M. Yumura, J. Yotani, Appl. Phys. Lett. 82, 8113 (2003). doi:10.1063/1.1540726

    Article  Google Scholar 

  12. S. Huang, L. Dai, A.W.H. Mau, Adv. Mater. 14, 1140 (2002). doi:10.1002/1521-4095(20020816)14:16<1140::AID-ADMA1140>3.0.CO;2-5

    Article  CAS  Google Scholar 

  13. E.G. Gamaly, T.W. Ebbesen, Phys. Rev. B 52, 2083 (1995). doi:10.1103/PhysRevB.52.2083

    Article  CAS  ADS  Google Scholar 

  14. S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315, 25 (1999). doi:10.1016/S0009-2614(99)01216-6

    Article  CAS  ADS  Google Scholar 

  15. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996). doi:10.1126/science.274.5293.1701

    Article  CAS  PubMed  ADS  Google Scholar 

  16. H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa, Appl. Phys. Lett. 76, 1776 (2000). doi:10.1063/1.126164

    Article  CAS  ADS  Google Scholar 

  17. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998). doi:10.1126/science.282.5391.1105

    Article  CAS  PubMed  ADS  Google Scholar 

  18. M. Błachnio, P. Staszczuk, G. Grodzicka, L. Lin, Y.X. Zhu, J. Therm. Anal. Calorim. 88, 601 (2007). doi:10.1007/s10973-006-8067-3

    Article  Google Scholar 

  19. P.L. Chen, J.K. Chang, C.T. Kuo, F.M. Pan, Appl. Phys. Lett. 86, 123111 (2005). doi:10.1063/1.1886260

    Article  ADS  Google Scholar 

  20. H. Pan, H. Gao, S.H. Lim, Y.P. Feng, J. Lin, J. Nanosci. Nanotechnol. 4, 1014 (2004). doi:10.1166/jnn.2004.126

    Article  CAS  PubMed  Google Scholar 

  21. T. Cebeci, A.M.O. Smith, J. Basic Eng. 92, 523–535 (1970)

    Google Scholar 

  22. H. Kind, J.M. Bonard, C. Emmenegger, L.O. Nilsson, K. Hernadi, E. Maillard-Schaller, L. Schlapbach, L. Forró, K. Kern, Adv. Mater. 11, 1285 (1999). doi:10.1002/(SICI)1521-4095(199910)11:15<1285::AID-ADMA1285>3.0.CO;2-J

    Article  CAS  Google Scholar 

  23. X. Xu, G.R. Brandes, Appl. Phys. Lett. 74, 2549 (1999). doi:10.1063/1.123894

    Article  CAS  ADS  Google Scholar 

  24. S. Sauerland, G. Lohofer, I. Egry, J. Non-Cryst. Solids 156, 883 (1993). doi:10.1016/0022-3093(93)90080-H

    Article  Google Scholar 

  25. A.S. Grove, Ind. Eng. Chem. 58, 48 (1966). doi:10.1021/ie50679a007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Sangsoo Noh for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Teng Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WT. Selective growth of carbon nanotubes using catalyst poisoning and geometric trench. J Mater Sci: Mater Electron 21, 16–19 (2010). https://doi.org/10.1007/s10854-009-9862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-9862-y

Keywords

Navigation