Skip to main content

Advertisement

Log in

Design and development of a novel PVA/CS/MOP ionic conductive hydrogel for flexible sensors: fabrication, characterization, and performance evaluation

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of advanced hydrogels with exceptional fracture strength and ionic conductivity is critical and challenging for the progress of flexible biological sensors. This study presents a novel PVA/CS/MOP ionic conductive hydrogel, which stands out due to its unique combination of remarkable fracture strength and enhanced ionic conductivity. While chitosan/PVA hydrogels have been previously established, this work focuses on a distinct fabrication method. It addresses the main scientific problem of achieving optimal fracture strength and ionic conductivity simultaneously. Chitosan (CS) is incorporated within a biocompatible polyvinyl alcohol (PVA) matrix, and subsequently, the hydrogel is immersed in muriate of potash (MOP) solution, resulting in a hydrogel with outstanding fracture strength (0.39 MPa) and stretchability (265% fracture strain). The salt soaking process effectively enhances the ionic conductivity of the hydrogel, achieving a maximum of 4.5 S m−1. Additionally, the hydrogel serves as a flexible sensor, capable of monitoring stable electrical signals and recovering after deformation, making it a promising candidate for various applications in flexible electronics and human health monitoring. This study highlights the novelty of achieving an optimized combination of fracture strength and ionic conductivity in the PVA/CS/MOP hydrogel, contributing to the advancement of flexible sensor technologies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data and code availability

Upon acceptance of the manuscript by the journal, readers will have access to the pertinent data and code linked to this research through the journal-designated electronic repository with a DOI. The dataset and code utilized to corroborate the outcomes of this study are accessible upon request.

References

  1. Kim K, Park YG, Hyun BG, Choi M, Park JU (2019) Recent advances in transparent electronics with stretchable forms. Adv Mater 31(20):1804690. https://doi.org/10.1002/adma.201804690

    Article  CAS  Google Scholar 

  2. Huang Q, Zhu Y (2019) Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes and applications. Adv Mater Technol 4(5):1800546. https://doi.org/10.1002/admt.201800546

    Article  CAS  Google Scholar 

  3. Kamyshny A, Magdassi S (2019) Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 48(6):1712–1740. https://doi.org/10.1039/c8cs00738a

    Article  CAS  Google Scholar 

  4. Xu K, Lu Y, Takei K (2019) Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 4(3):1800628. https://doi.org/10.1002/admt.201800628

    Article  CAS  Google Scholar 

  5. Zhong G et al (2020) Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing. Appl Phys Lett 117(9):3585. https://doi.org/10.1063/5.0013638

    Article  CAS  Google Scholar 

  6. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y (2019) Advanced carbon for flexible and wearable electronics. Adv Mater 31(9):1801072. https://doi.org/10.1002/adma.201801072

    Article  CAS  Google Scholar 

  7. Choi S, Han SI, Kim D, Hyeon T, Kim DH (2019) High-performance stretchable conductive nanocomposites: materials, processes and device applications. Chem Soc Rev 48(6):1566–1595. https://doi.org/10.1039/c8cs00706c

    Article  CAS  Google Scholar 

  8. Huang H-L et al (2020) Experimental quantum generative adversarial networks for image generation. Phys Rev Appl 16(2):024051. https://doi.org/10.1103/PhysRevApplied.16.024051

    Article  Google Scholar 

  9. Hu B et al (2018) Supramolecular hydrogels for antimicrobial therapy. Chem Soc Rev 47(18):6917–6929. https://doi.org/10.1039/c8cs00128f

    Article  CAS  Google Scholar 

  10. Hu H, Xu FJ (2020) Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci 8(8):2084–2101. https://doi.org/10.1039/d0bm00055h

    Article  CAS  Google Scholar 

  11. Ghauri ZH et al (2022) Novel pH-responsive chitosan/sodium alginate/PEG based hydrogels for release of sodium ceftriaxone. Mater Chem Phys 277:125456. https://doi.org/10.1016/j.matchemphys.2021.125456

    Article  CAS  Google Scholar 

  12. Daly AC, Riley L, Segura T, Burdick JA (2020) Hydrogel microparticles for biomedical applications. Nat Rev Mater 5(1):20–43. https://doi.org/10.1038/s41578-019-0148-6

    Article  CAS  Google Scholar 

  13. Ramli RA (2019) Slow release fertilizer hydrogels: a review. Polym Chem 10(45):6073–6090. https://doi.org/10.1039/c9py01036j

    Article  CAS  Google Scholar 

  14. Yao X et al (2019) Hydrogel paint. Adv Mater 31(39):1903062. https://doi.org/10.1002/adma.201903062

    Article  CAS  Google Scholar 

  15. Mondal S, Das S, Nandi AK (2020) A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6):1404–1454. https://doi.org/10.1039/c9sm02127b

    Article  CAS  Google Scholar 

  16. Zhang W, Feng P, Chen J, Sun Z, Zhao B (2019) Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 88:220–240. https://doi.org/10.1016/j.progpolymsci.2018.09.001

    Article  CAS  Google Scholar 

  17. Chen C et al (2019) Electrically conductive polyacrylamide/carbon nanotube hydrogel: reinforcing effect from cellulose nanofibers. Cellulose 26(16):8843–8851. https://doi.org/10.1007/s10570-019-02710-8

    Article  CAS  Google Scholar 

  18. Liang Y et al (2019) Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12):1900046. https://doi.org/10.1002/smll.201900046

    Article  CAS  Google Scholar 

  19. Tong R et al (2019) Ultrastretchable and antifreezing double-cross-linked cellulose ionic hydrogels with high strain sensitivity under a broad range of temperature. ACS Sustain Chem Eng 7(16):14256–14265. https://doi.org/10.1021/acssuschemeng.9b03555

    Article  CAS  Google Scholar 

  20. Wang T et al (2022) PVA/SA/MXene dual-network conductive hydrogel for wearable sensor to monitor human motions. J Appl Polym Sci 139(7):51627. https://doi.org/10.1002/app.51627

    Article  CAS  Google Scholar 

  21. Chang S et al (2020) Radiation-assistant preparation of highly conductive, transparent and self-healing hydrogels with triple-network structure. Polymer (Guildf) 188:122156. https://doi.org/10.1016/j.polymer.2020.122156

    Article  CAS  Google Scholar 

  22. Li X, Dong S, Yan H, Wu C (2012) Fabrication and properties of PVA-TiO2 hydrogel composites. Proced Eng 27:1488–1491. https://doi.org/10.1016/j.proeng.2011.12.612

    Article  CAS  Google Scholar 

  23. Li G et al (2022) Development of conductive hydrogels for fabricating flexible strain sensors. Small 18(5):2101518. https://doi.org/10.1002/smll.202101518

    Article  CAS  Google Scholar 

  24. Loukelis K, Papadogianni D, Chatzinikolaidou M (2022) Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. Int J Biol Macromol 209:1720–1730. https://doi.org/10.1016/j.ijbiomac.2022.04.129

    Article  CAS  Google Scholar 

  25. Liu D et al (2023) Tough, transparent and slippery PVA hydrogel led by syneresis. Small 19(14):2206819. https://doi.org/10.1002/smll.202206819

    Article  CAS  Google Scholar 

  26. Chen B, Chen Q, Xiao S, Feng J, Zhang X, Wang T (2021) Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci Adv 7(48):eabi7233. https://doi.org/10.1126/sciadv.abi7233

    Article  CAS  Google Scholar 

  27. Karzar Jeddi M, Mahkam M (2019) Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol 135:829–838. https://doi.org/10.1016/j.ijbiomac.2019.05.210

    Article  CAS  Google Scholar 

  28. Huang Y, Zhao X, Le Ke J, Zha XJ, Yang J, Yang W (2023) Engineering nanoscale solid networks of ionogel for enhanced thermoelectric power output and excellent mechanical properties. Chem Eng J 456:141156. https://doi.org/10.1016/j.cej.2022.141156

    Article  CAS  Google Scholar 

  29. Qin L et al (2016) Poly (3,4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance. Polym Chem 7(45):6954–6963. https://doi.org/10.1039/c6py01642a

    Article  CAS  Google Scholar 

  30. Luo CH, Zhao Y, Sun X, Luo FL (2020) Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels. J Polym Res 27(9):1–9. https://doi.org/10.1007/s10965-020-02247-6

    Article  CAS  Google Scholar 

  31. Peidayesh H, Ahmadi Z, Khonakdar HA, Abdouss M, Chodák I (2020) Baked hydrogel from corn starch and chitosan blends cross-linked by citric acid: preparation and properties. Polym Adv Technol 31(6):1256–1269

    Article  CAS  Google Scholar 

  32. Mostafa KM, Ameen HA (2022) Rendering viscose fabrics dye-able with basic and acid dyes using citric acid and chitosan nano particles based finishing formulation. J Nat Fibers 19(16):13167–13179. https://doi.org/10.1080/15440478.2022.2086661

    Article  CAS  Google Scholar 

  33. Dong X, Zhang YQ (2023) A novel mechanically robust and biodegradable egg white hydrogel membrane by combined unidirectional nanopore dehydration and annealing. Int J Mol Sci 24(16):12661. https://doi.org/10.3390/ijms241612661

    Article  CAS  Google Scholar 

  34. Jiao C, Zhang J, Liu T, Peng X, Wang H (2020) Mechanically strong, tough and shape deformable poly (acrylamide-co-vinylimidazole) hydrogels based on Cu2+ complexation. ACS Appl Mater Interfaces 12(39):44205–44214. https://doi.org/10.1021/acsami.0c13654

    Article  CAS  Google Scholar 

  35. Xu C et al (2021) Selected phase separation renders high strength and toughness to polyacrylamide/alginate hydrogels with large-scale cross-linking zones. ACS Appl Mater Interfaces 13(21):25383–25391. https://doi.org/10.1021/acsami.1c04577

    Article  CAS  Google Scholar 

  36. Chen G et al (2020) Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J Mater Chem A Mater 8(14):6776–6784. https://doi.org/10.1039/d0ta00002g

    Article  CAS  Google Scholar 

  37. Wu S et al (2021) Poly (vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv Mater 33(11):2007829. https://doi.org/10.1002/adma.202007829

    Article  CAS  Google Scholar 

  38. Jaspers M, Rowan AE, Kouwer PHJ (2015) Tuning hydrogel mechanics using the hofmeister effect. Adv Funct Mater 25(41):6503–6510. https://doi.org/10.1002/adfm.201502241

    Article  CAS  Google Scholar 

  39. Zhang X et al (2015) A flexible ionic liquid gelled PVA-Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv Mater Interfaces 2(15):1500267. https://doi.org/10.1002/admi.201500267

    Article  CAS  Google Scholar 

  40. Wang Z, Tao F, Pan Q (2016) A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors. J Mater Chem A Mater 4(45):17732–17739. https://doi.org/10.1039/C6TA08018A

    Article  CAS  Google Scholar 

  41. Zhao X, Liang J, Shan G, Pan P (2019) High strength of hybrid double-network hydrogels imparted by inter-network ionic bonds. J Mater Chem B 7(2):324–333. https://doi.org/10.1039/C8TB02803F

    Article  CAS  Google Scholar 

  42. Zhu C et al (2020) Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation. Chem Commun 56(58):8123–8126. https://doi.org/10.1039/d0cc01313g

    Article  CAS  Google Scholar 

  43. Zhou Y et al (2019) Highly stretchable, elastic and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 29(1):1806220. https://doi.org/10.1002/adfm.201806220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Natural Science Foundation of China (Grant No. 11702169), the Scientific Research Staring Foundation of Shanghai University of Engineering Science (Grant No. 2017-19), and the Talents Action Program of Shanghai University of Engineering Science (Grant No. 2017RC522017). The authors also acknowledge the support of the Class III Peak Discipline of Shanghai-Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing) (Project No.19YF1417900). The authors extend their appreciation to all members of the Functional Textile Technology Research Center at Shanghai University of Engineering Science for their valuable insights and assistance throughout various stages of this research, despite not being listed as authors.

Author information

Authors and Affiliations

Authors

Contributions

WX contributed to the conceptualization, methodology, software, investigation, formal analysis, and writing—original draft. MAAN assited in the data curation, writing—original draft, methodology, review, validation, and editing. BX was involved in the conceptualization, funding acquisition, resources, supervision, and writing—review and editing. ZC contributed to the visualization, investigation, resources, supervision, and writing—review and editing. The roles of each author were categorized according to the CASRAI Credit taxonomy.

Corresponding authors

Correspondence to Binjie Xin or Zhuoming Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest that could potentially influence or bias the presented work.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Newton, M.A.A., Xin, B. et al. Design and development of a novel PVA/CS/MOP ionic conductive hydrogel for flexible sensors: fabrication, characterization, and performance evaluation. J Mater Sci 59, 1104–1122 (2024). https://doi.org/10.1007/s10853-023-09255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09255-z

Navigation